Share Email Print

Proceedings Paper

Development of ZnO films for near-IR plasmonics
Author(s): David C. Look; K. D. Leedy; D. L. Agresta
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Ga-doped ZnO grown at 200 °C by pulsed-laser deposition in Ar ambient and annealed face-down on Zn foil at 500 °C in forming gas can attain near-record electrical characteristics for ZnO: resistivity ρ = 1.23 × 10-4 Ω-cm, mobility μHall = 34.1 cm2/V-s, and free-electron concentration n = 1.4 x 1021 cm-3, leading to a plasmonic resonance wavelength λres = 1.05 μm. A value of λres near 1 μm is important because metal-based plasmonics are lossy in the IR region. Longer resonant wavelengths in ZnO, e.g., the telecommunication wavelengths λres = 1.3 and 1.55 μm, are then simply produced by furnace anneals in air. A relatively unexploited characterization tool for such materials is spectroscopic ellipsometry (SE). By harnessing the full potential of SE we demonstrate full-color maps of thickness d, concentration nSE, and mobility μSE.

Paper Details

Date Published: 7 March 2014
PDF: 9 pages
Proc. SPIE 8980, Physics and Simulation of Optoelectronic Devices XXII, 89800P (7 March 2014); doi: 10.1117/12.2042548
Show Author Affiliations
David C. Look, Wright State Univ. (United States)
Wyle (United States)
Air Force Research Lab. (United States)
K. D. Leedy, Air Force Research Lab. (United States)
D. L. Agresta, Air Force Research Lab. (United States)

Published in SPIE Proceedings Vol. 8980:
Physics and Simulation of Optoelectronic Devices XXII
Bernd Witzigmann; Marek Osiński; Fritz Henneberger; Yasuhiko Arakawa, Editor(s)

© SPIE. Terms of Use
Back to Top