Share Email Print
cover

Proceedings Paper

A framework for analysis of the upper airway from real-time MRI sequences
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In recent years, real-time Magnetic Resonance Imaging (RT-MRI) has been used to acquire vocal tract data to support articulatory studies. The large amount of images resulting from these acquisitions needs to be processed and the resulting data analysed to extract articulatory features. This analysis is often performed by linguists and phoneticists and requires not only tools providing a high level exploration of the data, to gather insight over the different aspects of speech, but also a set of features to compare different vocal tract configurations in static and dynamic scenarios. In order to make the data available in a faster and systematic fashion, without the continuous direct involvement of image processing specialists, a framework is being developed to bridge the gap between the more technical aspects of raw data and the higher level analysis required by speech researchers. In its current state it already includes segmentation of the vocal tract, allows users to explore the different aspects of the acquired data using coordinated views, and provides support for vocal tract configuration comparison. Beyond the traditional method of visual comparison of vocal tract profiles, a quantitative method is proposed, considering relevant anatomical features, supported by an abstract representation of the data both for static and dynamic analysis.

Paper Details

Date Published: 3 February 2014
PDF: 11 pages
Proc. SPIE 9017, Visualization and Data Analysis 2014, 901703 (3 February 2014); doi: 10.1117/12.2042081
Show Author Affiliations
Samuel Silva, Univ. de Aveiro (Portugal)
António Teixeira, Univ. de Aveiro (Portugal)


Published in SPIE Proceedings Vol. 9017:
Visualization and Data Analysis 2014
Pak Chung Wong; David L. Kao; Ming C. Hao; Chaomei Chen, Editor(s)

© SPIE. Terms of Use
Back to Top