Share Email Print
cover

Proceedings Paper

Large-area bow-free n+ GaN templates by HVPE for LEDs
Author(s): J. H. Leach; Y. Shishkin; K. Udwary; E. A. Preble; K. R. Evans
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The economic and energy efficiency promise of solid state lighting drive a continuous need to reduce the cost and improve the efficiency of visible LEDs. Current III-N LED manufacturing is dominated by non-native substrate approaches which result in strained epitaxial films, high dislocation density in the buffer and device active regions, and large epiwafer bow, which together present major limitations in terms of LED device yield, performance, and cost. Large area sapphire substrates (6”, 8”, and beyond) are becoming available and present cost reduction potential yet they are even more vulnerable to strain and bow related issues. We present a novel approach to realizing a zero-bow relativelythick GaN on sapphire template that can be made at essentially any diameter and which bodes well for improved device yield, performance, and cost. The elimination of bow is achieved through a simple cost-effective stress balancing technique involving backside deposition. The result is a large area GaN template which is flat at all temperatures and which has 10× lower dislocation density than current GaN buffers. We report on the properties of these templates and provide device data for LED structures grown thereon.

Paper Details

Date Published: 8 March 2014
PDF: 13 pages
Proc. SPIE 8986, Gallium Nitride Materials and Devices IX, 898602 (8 March 2014); doi: 10.1117/12.2041642
Show Author Affiliations
J. H. Leach, Kyma Technologies, Inc. (United States)
Y. Shishkin, Kyma Technologies, Inc. (United States)
K. Udwary, Kyma Technologies, Inc. (United States)
E. A. Preble, Kyma Technologies, Inc. (United States)
K. R. Evans, Kyma Technologies, Inc. (United States)


Published in SPIE Proceedings Vol. 8986:
Gallium Nitride Materials and Devices IX
Jen-Inn Chyi; Yasushi Nanishi; Hadis Morkoç; Joachim Piprek; Euijoon Yoon; Hiroshi Fujioka, Editor(s)

© SPIE. Terms of Use
Back to Top