Share Email Print

Proceedings Paper

Interfacing whispering gallery mode microresonators for environmental biosensing
Author(s): Heather K. Hunt; Jeremy L. Dahmen; Carol E. Soteropulos
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Label-free biosensors that combine high sensitivity and high specificity characteristics have shown tremendous potential for applications in medical diagnostics, and have more recently been extended to the food safety and environmental monitoring arenas. A unique type of label-free, optical biosensor, based on Whispering Gallery Mode microresonators, has tremendous potential to revolutionize biodetection due to its extreme sensitivity. The primary limitation of these biosensors, however, is that they require the addition of biorecognition elements to specifically target a biological species of interest. Therefore, the ability to selectively functionalize the microresonator for a specific target molecule, without degrading device performance, is extremely important, and represents the next step in translating these devices from laboratory to field environments. Here, we demonstrate a variety of straightforward bioconjugation strategies that not only impart specificity to optical microresonators, but also allow for the creation of multi-use platforms for complex environments. Of particular interest is the ability to detect harmful bacteria, insects, and fungi in crop and water systems. The resulting surface chemistries are illustrated with XPS, SEM, and fluorescence and optical microscopy, and the device sensitivity is determined via quantitative microcavity analysis. The ability to minimize non-specific adsorption and target unique molecules in complex environments is demonstrated via ellipsometry and in situ device testing. The resulting devices can be recycled several times without loss of sensitivity. By combining these high sensitivity biosensors with appropriate biochemistries, the resulting platforms can be extended to address broader issues in environmental biosensing that directly impact agriculture.

Paper Details

Date Published: 4 March 2014
PDF: 10 pages
Proc. SPIE 8960, Laser Resonators, Microresonators, and Beam Control XVI, 89600O (4 March 2014); doi: 10.1117/12.2041568
Show Author Affiliations
Heather K. Hunt, Univ. of Missouri-Columbia (United States)
Jeremy L. Dahmen, Univ. of Missouri-Columbia (United States)
Carol E. Soteropulos, Univ. of Missouri-Columbia (United States)

Published in SPIE Proceedings Vol. 8960:
Laser Resonators, Microresonators, and Beam Control XVI
Alexis V. Kudryashov; Alan H. Paxton; Vladimir S. Ilchenko; Lutz Aschke; Kunihiko Washio, Editor(s)

© SPIE. Terms of Use
Back to Top