Share Email Print

Proceedings Paper

Improved compression performance using SVD-based filters for still images
Author(s): Konstantinos Konstantinides; Gregory S. Yovanof
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

It is well known that random noise on images significantly affects the efficiency of compression algorithms. Traditional spectral filtering techniques are effective in many cases but may require some prior knowledge of the noise and image characteristics. Furthermore, the processing requirements of spectral filters strongly depend on their noise rejection properties. In this paper we present a block-based, non-linear, filtering technique based on the Singular Value Decomposition (SVD). Traditional applications of SVD to image processing rely on heuristics to estimate the noise power and are usually applied to the entire image. The proposed scheme employs a complexity-theoretical criterion for noise estimation which exploits the well known property that random noise is hard to compare. By combining SVD with a lossless compression algorithm, in our case lossless JPEG, we can estimate the noise power and derive accurate SVD thresholds for noise removal. Simulation results on grayscale images contaminated by additive noise show that the technique can effectively filter noisy images and improve compression performance with no prior knowledge of either the image or the noise characteristics. Furthermore, the technique does not cause any blurring, unlike linear filtering techniques or median filtering.

Paper Details

Date Published: 3 March 1995
PDF: 7 pages
Proc. SPIE 2418, Still-Image Compression, (3 March 1995); doi: 10.1117/12.204120
Show Author Affiliations
Konstantinos Konstantinides, Hewlett-Packard Labs. (United States)
Gregory S. Yovanof, Hewlett-Packard Labs. (United States)

Published in SPIE Proceedings Vol. 2418:
Still-Image Compression
Majid Rabbani; Edward J. Delp; Sarah A. Rajala, Editor(s)

© SPIE. Terms of Use
Back to Top