Share Email Print
cover

Proceedings Paper

Fluorescence spectroscopy using excitation and emission matrix for quantification of tissue native fluorophores and cancer diagnosis
Author(s): Binlin Wu; S. K. Gayen; M. Xu
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Native fluorescence spectrum of normal and cancerous human prostate tissues is studied to distinguish between normal and cancerous tissues, and cancerous tissues at different cancer grade. The tissue samples were obtained from Cooperative Human Tissue Network (CHTN) and National Disease Research Interchange(NDRI). An excitation and emission matrix (EEM) was generated for each tissue sample by acquiring native fluorescence spectrum of the sample using multiple excitation wavelengths. The non-negative matrix factorization algorithm was used to generate fluorescence EEMs that correspond to the fluorophores in biological tissues, including tryptophan, collagen, elastin, nicotinamide adenine dinucleotide (NADH), flavin adenine dinucleotide (FAD) and the background paraffin. We hypothesize that, as a consequence of metabolic changes associated with the development of cancer, the concentrations of NADH and FAD are different in normal and cancerous tissues, and also different for different cancer grades. We used the ratio of the abundances of FAD and NADH to distinguish between normal and cancerous tissues, and the tissue cancer grade. The FAD-to-NADH ratio was found to be the highest for normal tissue and decreased as the cancer grade increased.

Paper Details

Date Published: 4 March 2014
PDF: 8 pages
Proc. SPIE 8926, Photonic Therapeutics and Diagnostics X, 89261M (4 March 2014); doi: 10.1117/12.2040985
Show Author Affiliations
Binlin Wu, Weill Cornell Medical College (United States)
S. K. Gayen, The City College of New York, CUNY (United States)
M. Xu, Fairfield Univ. (United States)


Published in SPIE Proceedings Vol. 8926:
Photonic Therapeutics and Diagnostics X
Bernard Choi; Hyun Wook Kang; Brian J. F. Wong; Guillermo J. Tearney; Andreas Mandelis; Nikiforos Kollias; Kenton W. Gregory; Justus F. Ilgner; Haishan Zeng; Laura Marcu, Editor(s)

© SPIE. Terms of Use
Back to Top