Share Email Print

Proceedings Paper

Model-based tomographic optoacoustic reconstructions in acoustically attenuating media
Author(s): X. Luís Deán-Ben; Daniel Razansky
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Acoustic attenuation influences the transmission of the ultrasonic waves excited optoacoustically in biological samples, in a way that the amplitude of the waves is reduced as they propagate through acoustically attenuating tissues. Furthermore, being dependent on frequency, acoustic attenuation also causes broadening of the time-resolved optoacoustic signals, which in turn leads to blurring of features and overall deterioration of image quality. The effects of acoustic attenuation are more prominent for the high frequency components of the optoacoustic waves and they must be taken into account for high resolution imaging. In this work, we modify a model-based reconstruction algorithm to incorporate the effects of acoustic attenuation in tomographic optoacoustic imaging set-ups. As the waves propagate from the excitation until the measurement points, they undergo space and frequency dependent attenuation, which can be effectively accounted for using the suggested model-based approach. The simulation results obtained showcase a good performance of the introduced method in terms of resolution improvement.

Paper Details

Date Published: 3 March 2014
PDF: 6 pages
Proc. SPIE 8943, Photons Plus Ultrasound: Imaging and Sensing 2014, 89435Y (3 March 2014); doi: 10.1117/12.2040554
Show Author Affiliations
X. Luís Deán-Ben, Technical Univ. Munich (Germany)
Helmholtz Ctr. Munich (Germany)
Daniel Razansky, Technical Univ. Munich (Germany)
Helmholtz Ctr. Munich (Germany)

Published in SPIE Proceedings Vol. 8943:
Photons Plus Ultrasound: Imaging and Sensing 2014
Alexander A. Oraevsky; Lihong V. Wang, Editor(s)

© SPIE. Terms of Use
Back to Top