Share Email Print

Proceedings Paper

Tracking the course of the manufacturing process in selective laser melting
Author(s): U. Thombansen; Alexander Gatej; M. Pereira
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

An innovative optical train for a selective laser melting based manufacturing system (SLM) has been designed under the objective to track the course of the SLM process. In this, the thermal emission from the melt pool and the geometric properties of the interaction zone are addressed by applying a pyrometer and a camera system respectively. The optical system is designed such that all three radiations from processing laser, thermal emission and camera image are coupled coaxially and that they propagate on the same optical axis. As standard f-theta lenses for high power applications inevitably lead to aberrations and divergent optical axes for increasing deflection angles in combination with multiple wavelengths, a pre-focus system is used to implement a focusing unit which shapes the beam prior to passing the scanner. The sensor system records synchronously the current position of the laser beam, the current emission from the melt pool and an image of the interaction zone. Acquired data of the thermal emission is being visualized after processing which allows an instant evaluation of the course of the process at any position of each layer. As such, it provides a fully detailed history of the product This basic work realizes a first step towards self-optimization of the manufacturing process by providing information about quality relevant events during manufacture. The deviation from the planned course of the manufacturing process to the actual course of the manufacturing process can be used to adapt the manufacturing strategy from one layer to the next. In the current state, the system can be used to facilitate the setup of the manufacturing system as it allows identification of false machine settings without having to analyze the work piece.

Paper Details

Date Published: 20 February 2014
PDF: 7 pages
Proc. SPIE 8963, High-Power Laser Materials Processing: Lasers, Beam Delivery, Diagnostics, and Applications III, 89630O (20 February 2014); doi: 10.1117/12.2040330
Show Author Affiliations
U. Thombansen, RWTH Aachen Univ. (Germany)
Alexander Gatej, RWTH Aachen Univ. (Germany)
M. Pereira, Federal Institute of Santa Catharina Catarina (Brazil)

Published in SPIE Proceedings Vol. 8963:
High-Power Laser Materials Processing: Lasers, Beam Delivery, Diagnostics, and Applications III
Friedhelm Dorsch, Editor(s)

© SPIE. Terms of Use
Back to Top