Share Email Print
cover

Proceedings Paper

Drawing robust infrared optical fibers from preforms produced by efficient multimaterial stacked coextrusion
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The utilization of infrared chalcogenide glass (ChG) fibers has long been hampered by the unfavorable mechanical characteristics typical of these glasses. Furthermore, the usual pathways to producing such fibers necessitate large-scale synthesis of high-purity glass, which represents a challenge in an academic environment, and thus presents an obstacle to the transfer of research results from academia to industry. Here we present our recent progress on multimaterial coextrusion technology that allows for high-efficiency disc-to-fiber manufacturing. A one-step extrusion from two glass discs (10-mm-diameter and 3-mm-thick) and a thermoplastic disc results in a robust step-index preform that is thermally drawn in an ambient atmosphere into continuous lengths of fiber with core diameters on the order of tens of micrometers. These results offer an alternative methodology that overcomes many of the traditional obstacles while potentially reducing the production cost.

Paper Details

Date Published: 7 March 2014
PDF: 7 pages
Proc. SPIE 8982, Optical Components and Materials XI, 89820F (7 March 2014); doi: 10.1117/12.2039967
Show Author Affiliations
Guangming Tao, CREOL, The College of Optics and Photonics, Univ. of Central Florida (United States)
Ayman F. Abouraddy, CREOL, The College of Optics and Photonics, Univ. of Central Florida (United States)


Published in SPIE Proceedings Vol. 8982:
Optical Components and Materials XI
Michel J. F. Digonnet; Shibin Jiang, Editor(s)

© SPIE. Terms of Use
Back to Top