Share Email Print

Proceedings Paper

Computational architecture for full-color holographic displays based on anisotropic leaky-mode modulators
Author(s): Sundeep Jolly; Daniel Smalley; James Barabas; V. Michael Bove
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The MIT Mark IV holographic display system employs a novel anisotropic leaky-mode spatial light modulator that allows for the simultaneous and superimposed modulation of red, green, and blue light via wavelength-division multiplexing. This WDM-based scheme for full-color display requires that incoming video signals containing holographic fringe information are comprised of non-overlapping spectral bands that fall within the available 200 MHz output bandwidth of commercial GPUs. These bands correspond to independent color channels in the display output and are appropriately band-limited and centered to match the multiplexed passbands and center frequencies in the frequency response of the mode-coupling device. The computational architecture presented in this paper involves the computation of holographic fringe patterns for each color channel and their summation in generating a single video signal for input to the display. In composite, 18 such input signals, each containing holographic fringe information for 26 horizontal-parallax only holographic lines, are generated via three dual-head GPUs for a total of 468 holographic lines in the display output. We present a general scheme for full-color CGH computation for input to Mark IV and furthermore depict the adaptation of the diffraction specific coherent panoramagram approach to fringe computation for the Mark IV architecture.

Paper Details

Date Published: 25 February 2014
PDF: 12 pages
Proc. SPIE 9006, Practical Holography XXVIII: Materials and Applications, 90060W (25 February 2014); doi: 10.1117/12.2039795
Show Author Affiliations
Sundeep Jolly, MIT Media Lab. (United States)
Daniel Smalley, Brigham Young Univ. (United States)
James Barabas, MIT Media Lab. (United States)
V. Michael Bove, MIT Media Lab. (United States)

Published in SPIE Proceedings Vol. 9006:
Practical Holography XXVIII: Materials and Applications
Hans I. Bjelkhagen; V. Michael Bove, Editor(s)

© SPIE. Terms of Use
Back to Top