Share Email Print

Proceedings Paper

Dimensional characterisation of collagen constructs in situ
Author(s): R. Taylor; J. Reynolds; B. Chikkanna; D. Daly; R. A. Brown; N. S. Tan
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We present results of a non contacting instrument based on the confocal scanning technique for assessing the thickness and structure of collagen substrates and tissue constructs. There is an unmet need in the creation of tissue constructs to quantitatively evaluate their dimensional characteristics during manufacture. With this knowledge more effective structures can be produced. The measurement is complicated by the need to make these measurements in situ. For many processes, including the plastic compression of collagen gels for generating 3D structures, the constructs are situated in a liquid solution contained in a well plate or similar container. It is therefore necessary to perform the measurements through an interfering medium and this confounds many measurement techniques. A system has therefore been developed that utilizes a scanning confocal arrangement to accurately measure the dimensional characteristics of these constructs in situ. A fiber based optical arrangement using compact, proven components from the telecommunications industry has been integrated into a dedicated system architecture so that the constructs can be measured whilst in production. This architecture is particularly important due to the “wet” nature of the samples. The meter can measure constructs with thicknesses from a few tens of micrometers up to 0.9 millimeters with sub-micrometer resolution. Results are presented that show how the meter has been used to evaluate changes in these collagen constructs whilst in production. This was little understood prior to these measurements and the greater understanding of how the materials behave has allowed the process to be greatly improved.

Paper Details

Date Published: 26 February 2014
PDF: 7 pages
Proc. SPIE 8946, Optical Elastography and Tissue Biomechanics, 89460W (26 February 2014); doi: 10.1117/12.2039168
Show Author Affiliations
R. Taylor, Lein Applied Diagnostics Ltd. (United Kingdom)
J. Reynolds, Lein Applied Diagnostics Ltd. (United Kingdom)
B. Chikkanna, Lein Applied Diagnostics Ltd. (United Kingdom)
D. Daly, Lein Applied Diagnostics Ltd. (United Kingdom)
R. A. Brown, Univ. College London (United Kingdom)
N. S. Tan, Univ. College London (United Kingdom)

Published in SPIE Proceedings Vol. 8946:
Optical Elastography and Tissue Biomechanics
Kirill V. Larin; David D. Sampson, Editor(s)

© SPIE. Terms of Use
Back to Top