Share Email Print

Proceedings Paper

On the sensitivity improvement of a miniaturized label-free electrochemical impedance biosensor
Author(s): Yi-Ching Kuo; Shin-Ting Chou; Pei-I Tsai; Guan-Wei Li; Chih-Ting Lin; Chih-Kung Lee
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Development of point-of-care biosensors continues to gain popularity due to the demand of improving the cost performance in today’s health care. As cardiovascular disease induced death remains on the top 3 death causes for most Asian countries, this paper is to present a high-sensitivity point-of-care biosensor for the detection of cardiovascular disease biomarkers. To meet the point-of-care biosensors requirements, which include characteristics such as small size, low cost, and ease of operation, we adopted electrochemical methods as the basis of detection. The 4-aminothiophenol was adopted as the bio-linkers to facilitate the antibody-antigen interaction. A more stable three-electrode configuration was miniaturized and laid out onto a biochip. A microfluidics subsystem based on opto-piezoelectronic technology was also integrated to create the microfluidic biochip system. To improve the detection sensitivity associated with the reduction in biochip size, electrochemistry simulation was used to investigate several potentially effective means. We found that the electric field on the edge near working electrode and counter electrode was higher, which was verified by using atomic force microscopy to measure the surface potential. With the successful verification, we explored the configuration, i.e., lengthened the edge of working electrode and counter electrode without changing the areas of working electrode and counter electrode and the gap between these two electrodes, so as to evaluate the possibility of improving the measurement efficiency in our newly developed biochips. Detailed design, simulation and experimental results, improved design identified, etc. were all presented in detail.

Paper Details

Date Published: 6 March 2014
PDF: 6 pages
Proc. SPIE 8976, Microfluidics, BioMEMS, and Medical Microsystems XII, 897619 (6 March 2014); doi: 10.1117/12.2039103
Show Author Affiliations
Yi-Ching Kuo, National Taiwan Univ. (Taiwan)
Shin-Ting Chou, National Taiwan Univ. (Taiwan)
Pei-I Tsai, National Taiwan Univ. (Taiwan)
Guan-Wei Li, National Taiwan Univ. (Taiwan)
Chih-Ting Lin, National Taiwan Univ. (Taiwan)
Chih-Kung Lee, National Taiwan Univ. (Taiwan)

Published in SPIE Proceedings Vol. 8976:
Microfluidics, BioMEMS, and Medical Microsystems XII
Bonnie L. Gray; Holger Becker, Editor(s)

© SPIE. Terms of Use
Back to Top