Share Email Print
cover

Proceedings Paper

Inter-channel crosstalk in densely aligned multimode polymer parallel optical waveguides
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We theoretically estimate the inter-channel crosstalk in densely aligned multimode polymer parallel optical waveguides using a beam propagation method, and compare the results of graded-index (GI)-core waveguides with those of conventional step-index (SI)-core counterpart. In particular, we simulate the crosstalk in bridged core waveguides. Here, the bridged core is sometimes observed in the waveguides fabricated using the imprinting method. The inter-channel crosstalk in SI-core waveguide increases from -25 dB to -4 dB with increasing the bridge thickness. Contrastingly, the worst crosstalk in a GI-core is as low as -15 dB despite the bridged structure as long as the bridge of the core is not included in the index distribution of the GI-core core, namely SI bridged core. In addition, the crosstalk in the GI-core decreases when the multiple cores aligned in parallel have a different structure (core size, refractive index, etc.), because the difference in the core structure makes changes in the distribution of propagation constants, resulting in decreasing the mode coupling efficiency between the two cores. Hence, the worst crosstalk in the GI-core waveguide with a slightly different core structure is as low as -19 dB despite the bridged structure. Thus, the imprinting method should be utilized for GI-core waveguides: the inter-channel crosstalk is un-problematic even if a residual layer remains.

Paper Details

Date Published: 8 March 2014
PDF: 6 pages
Proc. SPIE 8989, Smart Photonic and Optoelectronic Integrated Circuits XVI, 89890W (8 March 2014); doi: 10.1117/12.2038878
Show Author Affiliations
Takuya Kudo, Keio Univ. (Japan)
Takaaki Ishigure, Keio Univ. (Japan)


Published in SPIE Proceedings Vol. 8989:
Smart Photonic and Optoelectronic Integrated Circuits XVI
Louay A. Eldada; El-Hang Lee; Sailing He, Editor(s)

© SPIE. Terms of Use
Back to Top