Share Email Print
cover

Proceedings Paper

Laser speckle tracking for monitoring and analysis of retinal photocoagulation
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Laser coagulation of the retina is an established treatment for several retinal diseases. The absorbed laser energy and thus the induced thermal damage varies with the transmittance and scattering properties of the anterior eye media and with the pigmentation of the fundus. The temperature plays the most important role in the coagulation process. An established approach to measure a mean retinal temperature rise is optoacoustics, however it provides limited information on the coagulation. Phase sensitive OCT potentially offers a three dimensional temporally resolved temperature distribution but is very sensitive to slightest movements which are clinically hard to avoid. We develop an optical technique able to monitor and quantify thermally and coagulation induced tissue movements (expansions and contractions) and changes in the tissue structure by dynamic laser speckle analysis (LSA) offering a 2D map of the affected area. A frequency doubled Nd:YAG laser (532nm) is used for photocoagulation. Enucleated porcine eyes are used as targets. The spot is 100μm. A Helium Neon laser (HeNe) is used for illumination. The backscattered light of a HeNe is captured with a camera and the speckle pattern is analyzed. A Q-switched Nd:YLF laser is used for simultaneous temperature measurements with the optoacoustic approach. Radial tissue movements in the micrometer regime have been observed. The signals evaluation by optical flow algorithms and generalized differences tuned out to be able to distinguish between regions with and without immediate cell damage. Both approaches have shown a sensitivity of 93% and a specificity above 99% at their optimal threshold.

Paper Details

Date Published: 26 February 2014
PDF: 7 pages
Proc. SPIE 8946, Optical Elastography and Tissue Biomechanics, 89460F (26 February 2014); doi: 10.1117/12.2038860
Show Author Affiliations
Eric Seifert, Medical Laser Ctr. Lübeck GmbH (Germany)
Katharina Bliedtner, Medical Laser Ctr. Lübeck GmbH (Germany)
Ralf Brinkmann, Medical Laser Ctr. Lübeck GmbH (Germany)


Published in SPIE Proceedings Vol. 8946:
Optical Elastography and Tissue Biomechanics
Kirill V. Larin; David D. Sampson, Editor(s)

© SPIE. Terms of Use
Back to Top