Share Email Print
cover

Proceedings Paper

Super-resolution restoration of motion blurred images
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this paper, we investigate super-resolution image restoration from multiple images, which are possibly degraded with large motion blur. The blur kernel for each input image is separately estimated. This is unlike many existing super-resolution algorithms, which assume identical blur kernel for all input images. We also do not make any restrictions on the motion fields among images; that is, we estimate dense motion field without simplifications such as parametric motion. We present a two-step algorithm: In the first step, each input image is deblurred using the estimated blur kernel. In the second step, super-resolution restoration is applied to the deblurred images. Because the estimated blur kernels may not be accurate, we propose a weighted cost function for the super-resolution restoration step, where a weight associated with an input image reflects the reliability of the corresponding kernel estimate and the deblurred image. We provide experimental results from real video data captured with a hand-held camera, and show that the proposed weighting scheme is robust to motion deblurring errors.

Paper Details

Date Published: 7 March 2014
PDF: 9 pages
Proc. SPIE 9023, Digital Photography X, 90230F (7 March 2014); doi: 10.1117/12.2038844
Show Author Affiliations
Qinchun Qian, Louisiana State Univ. (United States)
Bahadir K. Gunturk, Louisiana State Univ. (United States)
Istanbul Medipol Univ. (Turkey)


Published in SPIE Proceedings Vol. 9023:
Digital Photography X
Nitin Sampat; Radka Tezaur; Sebastiano Battiato; Boyd A. Fowler, Editor(s)

© SPIE. Terms of Use
Back to Top