Share Email Print

Proceedings Paper

Microfabrication of passive electronic components with printed graphene-oxide deposition
Author(s): Dogan Sinar; George K. Knopf; Suwas Nikumb
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Flexible electronic circuitry is an emerging technology that will significantly impact the future of healthcare and medicine, food safety inspection, environmental monitoring, and public security. Recent advances in drop-on-demand printing technology and electrically conductive inks have enabled simple electronic circuits to be fabricated on mechanically flexible polymers, paper, and bioresorbable silk. Research has shown that graphene, and its derivative formulations, can be used to create low-cost electrically conductive inks. Graphene is a one atom thick two-dimensional layer composed of carbon atoms arranged in a hexagonal lattice forming a material with very high fracture strength, high Young’s Modulus, and low electrical resistance. Non-conductive graphene-oxide (GO) inks can also be synthesized from inexpensive graphite powders. Once deposited on the flexible substrate the electrical conductivity of the printed GO microcircuit traces can be restored through thermal reduction. In this paper, a femtosecond laser with a wavelength of 775nm and pulse width of 120fs is used to transform the non-conductive printed GO film into electrically conductive oxygen reduced graphene-oxide (rGO) passive electronic components by the process of laser assisted thermal reduction. The heat affected zone produced during the process was minimized because of the femtosecond pulsed laser. The degree of conductivity exhibited by the microstructure is directly related to the laser power level and exposure time. Although rGO films have higher resistances than pristine graphene, the ability to inkjet print capacitive elements and modify local resistive properties provides for a new method of fabricating sensor microcircuits on a variety of substrate surfaces.

Paper Details

Date Published: 7 March 2014
PDF: 11 pages
Proc. SPIE 8973, Micromachining and Microfabrication Process Technology XIX, 89730H (7 March 2014); doi: 10.1117/12.2038411
Show Author Affiliations
Dogan Sinar, The Univ. of Western Ontario (Canada)
George K. Knopf, The Univ. of Western Ontario (Canada)
Suwas Nikumb, National Research Council Canada (Canada)

Published in SPIE Proceedings Vol. 8973:
Micromachining and Microfabrication Process Technology XIX
Mary Ann Maher; Paul J. Resnick, Editor(s)

© SPIE. Terms of Use
Back to Top