Share Email Print

Proceedings Paper

Spectrum analysis of photoacoustic signals for tissue classification
Author(s): Parag V. Chitnis; Jonathan Mamou; Ashwin Sampathkumar; Ernest J. Feleppa
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Quantitative ultrasound (QUS) estimates derived from power spectra of pulse-echo signals are sensitive to mi- crostructure and potentially can differentiate among tissues. However, QUS estimates do not provide molecular specificity. We investigated the feasibility of obtaining quantitative photoacoustic (QPA) estimates for sensi- tivity to microstructure and chromophores for tissue classification. QPA methods were tested using gel-based phantoms containing uniformly dispersed, black polyethylene spheres (1E5 particles/ml) with nominal mean diameters of 23.5, 29.5, 42.0, and 58.0 μm. A pulsed, 532-nm laser excited the photoacoustic (PA) response. A single-element, 34-MHz transducer with a 12-mm focal length was raster scanned over the phantom to acquire 3D PA data. Normalized power spectra were generated from the PA signals within 2079, moving (50% overlap), 1-mm-cube regions-of-interest (ROIs) to provide three QPA estimates: spectral slope (SS), spectral intercept (SI), and effective absorber size (EAS). SS and SI were computed using a linear-regression approximation to the normalized spectrum in the -6-dB band. EAS was computed by fitting the normalized spectrum in the -20-dB band to the multi-sphere analytical solution. All estimates were correlated with the size of particles dispersed in the phantoms. SS decreased while SI increased with an increase in particle size. EAS was correlated with nominal particle diameter, but particles aggregation and the finite bandwidth of the PAI system resulted in outliers. SS, SI, and EAS for the 23.5-μm-phantom were -0.14±-0.04 dB/MHz, 4.8±1.3 dB, and 25.4±6.3 μm, respectively; the corresponding values for the 58.0-μm phantom were -0.47±-0.03 dB/MHz, 15.6±0.9 dB, and 82.7±0.9 μm.

Paper Details

Date Published: 3 March 2014
PDF: 7 pages
Proc. SPIE 8943, Photons Plus Ultrasound: Imaging and Sensing 2014, 89432J (3 March 2014); doi: 10.1117/12.2037929
Show Author Affiliations
Parag V. Chitnis, Riverside Research Institute (United States)
Jonathan Mamou, Riverside Research Institute (United States)
Ashwin Sampathkumar, Riverside Research Institute (United States)
Ernest J. Feleppa, Riverside Research Institute (United States)

Published in SPIE Proceedings Vol. 8943:
Photons Plus Ultrasound: Imaging and Sensing 2014
Alexander A. Oraevsky; Lihong V. Wang, Editor(s)

© SPIE. Terms of Use
Back to Top