Share Email Print

Proceedings Paper

Estimation of skin optical parameters for real-time hyperspectral imaging applications
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Hyperspectral imaging combines high spectral and spatial resolution in one modality. This imaging technique is a promising tool for objective medical diagnostics. However, to be attractive in a clinical setting the technique needs to be fast and accurate. Hyperspectral imaging can be used to analyze the chemical composition of tissue using spectroscopic methods, and is thus useful as a general purpose diagnostic tool. In this study, we combine an analytic diffusion model for photon transport with real-time analysis of hyperspectral images. This is achieved by inverting and parallelizing the photon transport model on a GPU to yield optical parameters from diffuse reflectance spectra. The resulting inversion chain was found to output the results in real-time. The inverse approach was found to characterize the relative differences in the optical properties. The presented approach is a proof of principle, necessary for developing a future real-time diagnostic system using hyperspectral imaging.

Paper Details

Date Published: 4 March 2014
PDF: 10 pages
Proc. SPIE 8926, Photonic Therapeutics and Diagnostics X, 89260S (4 March 2014); doi: 10.1117/12.2037827
Show Author Affiliations
Asgeir Bjorgan, Norwegian Univ. of Science and Technology (Norway)
Lise Lyngsnes Randeberg, Norwegian Univ. of Science and Technology (Norway)

Published in SPIE Proceedings Vol. 8926:
Photonic Therapeutics and Diagnostics X
Bernard Choi; Hyun Wook Kang; Brian J. F. Wong; Guillermo J. Tearney; Andreas Mandelis; Nikiforos Kollias; Kenton W. Gregory; Justus F. Ilgner; Haishan Zeng; Laura Marcu, Editor(s)

© SPIE. Terms of Use
Back to Top