Share Email Print
cover

Proceedings Paper

Digital signal processing for high spectral efficiency optical networks
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Digital signal processing (DSP) for high spectrum efficiency transmission system are investigated in both long-haul and short haul optical networks. For long-haul transmission, two different super-Nyquist WDM systems based on advanced post (receiver side) and pre (transmitter side) DSP are demonstrated and studied. A novel DSP scheme for this optical super-Nyquist filtering 9-QAM like signals based on multi-modulus equalization (MMEQ) without post filter are proposed and experimentally demonstrated, which directly recovers the Nyquist filtered QPSK to a 9-QAM like signal. This improved filtering tolerance and transmission performance are demonstrated in an 8-channel 112-Gb/s wavelengthdivision- multiplexing (WDM) experiment with a 25GHz-grid over 2640-km single-mode fiber (SMF). Alternatively, a novel digital super-Nyquist signal generation scheme is proposed to further suppress the Nyquist signal bandwidth and reduce the channel crosstalk without using optical pre-filtering and using. Only optical couplers are needed for super- Nyquist WDM multiplexing. Using this scheme, we successfully generate and transmit 10 channel 32-GBaud (128-Gb/s) PDM-9-QAM signals within 25-GHz grid over 2975-km at a net SE of 4 bit/s/Hz (after excluding the 20% soft-decision FEC overhead). We extend the DSP for short haul optical transmission networks by using high order QAMs. We propose and experimentally demonstrate a high speed CAP-64QAM system using direct modulation laser (DML) based on direct detection and digital equalizations. Decision-directed least mean squares (DD-LMS) are used to equalize the CAP- 64QAM. Using this scheme, we successfully generate and transmit up to a record 60-Gb/s CAP-64QAM over 20-km stand single-mode fiber (SSMF) based on the DML and direct detection.

Paper Details

Date Published: 1 February 2014
PDF: 14 pages
Proc. SPIE 9008, Optical Metro Networks and Short-Haul Systems VI, 90080G (1 February 2014); doi: 10.1117/12.2037391
Show Author Affiliations
Junwen Zhang, Fudan Univ. (China)
ZTE USA (United States)
Jianjun Yu, ZTE USA (United States)
Nan Chi, Fudan Univ. (China)


Published in SPIE Proceedings Vol. 9008:
Optical Metro Networks and Short-Haul Systems VI
Werner Weiershausen; Benjamin B. Dingel; Achyut K. Dutta; Atul K. Srivastava, Editor(s)

© SPIE. Terms of Use
Back to Top