Share Email Print
cover

Proceedings Paper

Contact resistance evolution of highly cycled, lightly loaded micro-contacts
Author(s): Christopher Stilson; Ronald Coutu
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Reliable microelectromechanical systems (MEMS) switches are critical for developing high performance radio frequency circuits like phase shifters. Engineers have attempted to improve reliability and lifecycle performance using novel contact metals, unique mechanical designs and packaging. Various test fixtures including: MEMS devices, atomic force microscopes (AFM) and nanoindentors have been used to collect resistance and contact force data. AFM and nanoindentor test fixtures allow direct contact force measurements but are severely limited by low resonance sensors, and therefore low data collection rates. This paper reports the contact resistance evolution results and fabrication of thin film, sputtered and evaporated gold, micro-contacts dynamically tested up to 3kHz. The upper contact support structure consists of a gold surface micromachined, fix-fix beam designed with sufficient restoring force to overcome adhesion. The hemisphere-upper and planar-lower contacts are mated with a calibrated, external load resulting in approximately 100μN of contact force and are cycled in excess of 106 times or until failure. Contact resistance is measured, in-situ, using a cross-bar configuration and the entire apparatus is isolated from external vibration and housed in an enclosure to minimize contamination due to ambient environment. Additionally, contact cycling and data collection are automated using a computer and LabVIEW. Results include contact resistance measurements of 6 and 8 μm radius contact bumps and lifetime testing up to 323.6 million cycles.

Paper Details

Date Published: 7 March 2014
PDF: 12 pages
Proc. SPIE 8975, Reliability, Packaging, Testing, and Characterization of MOEMS/MEMS, Nanodevices, and Nanomaterials XIII, 89750F (7 March 2014); doi: 10.1117/12.2037355
Show Author Affiliations
Christopher Stilson, Air Force Institute of Technology (United States)
Ronald Coutu, Air Force Institute of Technology (United States)


Published in SPIE Proceedings Vol. 8975:
Reliability, Packaging, Testing, and Characterization of MOEMS/MEMS, Nanodevices, and Nanomaterials XIII
Herbert R. Shea; Rajeshuni Ramesham, Editor(s)

© SPIE. Terms of Use
Back to Top