Share Email Print
cover

Proceedings Paper

Measurement of transient surface temperatures during rubbing using infrared thermography
Author(s): Tau You; Jianwei Yu; Xiaofen Yu
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Infrared thermometer could provide IR radiance information to get the corresponding temperature as the machine is working. But the emissivity coefficient, which converts IR radiance to temperature, would vary with change of surface properties during rubbing, and this would bring dynamic error in measurement. In this study, we introduced a special tester, in the side of which compact IR thermometer are mounted. The thermometer enables us to measure contact surface temperature directly during tests of a rotating ring and a flat block which had a laser diode fixed under its contact surface. Based on Kirchhoff theory, the calculate model of the spectral emissivity is constructed. The normal emissivity at target region are measured through trigonometric ray consisted of InGaAsP laser source, PbSe detector and objective surface. So the temperature value from the IR thermometer could be corrected dynamically according to the real-time emissivity. The structure and the principle of the apparatus are described. The key technologies and the corresponding solution methods are briefly discussed. The error due to the rapid variations of emissivity value with change in contact conditions was shown, and it must be taken into consideration in radiometric temperature measurement in rubbing and could be especially useful in the verification of friction surface temperature predictions.

Paper Details

Date Published: 10 October 2013
PDF: 6 pages
Proc. SPIE 8916, Sixth International Symposium on Precision Mechanical Measurements, 89160Q (10 October 2013); doi: 10.1117/12.2035869
Show Author Affiliations
Tau You, Hefei Univ. of Technology (China)
Jianwei Yu, Hefei Univ. of Technology (China)
Xiaofen Yu, Hefei Univ. of Technology (China)


Published in SPIE Proceedings Vol. 8916:
Sixth International Symposium on Precision Mechanical Measurements
Shenghua Ye; Yetai Fei, Editor(s)

© SPIE. Terms of Use
Back to Top