Share Email Print
cover

Proceedings Paper

Compact all-fiber interferometer system for shock acceleration measurement
Author(s): Jiang Zhao; Shaohua Pi; Guangwei Hong; Dong Zhao; Bo Jia
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Acceleration measurement plays an important role in a variety of fields in science and engineering. In particular, the accurate, continuous and non-contact recording of the shock acceleration profiles of the free target surfaces is considered as a critical technique in shock physics. Various kinds of optical interferometers have been developed to monitor the motion of the surfaces of shocked targets since the 1960s, for instance, the velocity interferometer system for any reflector, the fiber optic accelerometer, the photonic Doppler velocimetry system and the displacement interferometer. However, most of such systems rely on the coherent quasi-monochromatic illumination and discrete optic elements, which are costly in setting-up and maintenance. In 1996, L. Levin et al reported an interferometric fiber-optic Doppler velocimeter with high-dynamic range, in which fiber-coupled components were used to replace the discrete optic elements. However, the fringe visibility of the Levin’s system is low because of the coupled components, which greatly limits the reliability and accuracy in the shock measurement. In this paper, a compact all-fiber interferometer system for measuring the shock acceleration is developed and tested. The advantage of the system is that not only removes the non-interfering light and enhances the fringe visibility, but also reduces polarization induced signal fading and the polarization induced phase shift. Moreover, it also does not require a source of long coherence length. The system bases entirely on single-mode fiber optics and mainly consists of a polarization beam splitter, a faraday rotator, a depolarizer and a 3×3 single-mode fiber coupler which work at 1310 nm wavelength. The optical systems of the interferometer are described and the experimental results compared with a shock acceleration calibration system with a pneumatic exciter (PneuShockTM Model 9525C by The Modal Shop) are reported. In the shock acceleration test, the interferometer system measured shock acceleration with peak accelerations of ~100,000 m/s2 and the durations of ~0.2 ms which are conformed to the results of the shock acceleration calibration system. The measured relative error of the acceleration is within 3%.

Paper Details

Date Published: 29 August 2013
PDF: 6 pages
Proc. SPIE 8914, International Symposium on Photoelectronic Detection and Imaging 2013: Fiber Optic Sensors and Optical Coherence Tomography, 891419 (29 August 2013); doi: 10.1117/12.2034827
Show Author Affiliations
Jiang Zhao, Fudan Univ. (China)
Shaohua Pi, Fudan Univ. (China)
Guangwei Hong, Fudan Univ. (China)
Dong Zhao, Fudan Univ. (China)
Bo Jia, Fudan Univ. (China)


Published in SPIE Proceedings Vol. 8914:
International Symposium on Photoelectronic Detection and Imaging 2013: Fiber Optic Sensors and Optical Coherence Tomography
Yunjiang Rao, Editor(s)

© SPIE. Terms of Use
Back to Top