Share Email Print

Proceedings Paper

Damage effect on CMOS detector irradiated by single-pulse laser
Author(s): Feng Guo; Rongzhen Zhu; Ang Wang; Xiang’ai Cheng
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Imaging systems are widespread observation tools used to fulfill various functions such as recognition, detection and identification. These devices such as CMOS and CCD can be damaged by laser. It is very important to study the damage mechanism of CMOS and CCD. Previous studies focused on the interference and damage of CCD. There were only a few researches on the interaction of CMOS and the laser. In this paper, using a 60ns, 1064 nm single-pulse laser to radiate the front illuminated CMOS detector, the typical experiment phenomena were observed and the corresponding energy density thresholds were measured. According to the experiment phenomena, hard damage process of CMOS can be divided into 3 stages. Based on the structure and working principle of CMOS, studying the damage mechanism of 3 stages by theoretical analysis, point damage was caused by the increase in leakage current due to structural defects resulting from thermal effects, half black line damage and black lines cross damage were caused by signal interruption due to that the device circuit fuses were cut. Enhancing the laser energy density, the damaged area expanded. Even if the laser energy density reached 1.95 J/cm2, black lines has covered most of the detector pixels, the detector still not completely lapsed, the undamaged area can imaging due to that pixels of CMOS were separated with each other. Experiments on CMOS by laser pulses at the wavelength of 1064 nm and the pulse duration in 25ps was carried out, then the thresholds with different pulse durations were measured and compared. Experiments on CMOS by fs pulsed laser at the frequency of 1 Hz, 10 Hz and 1000 Hz were carried out, respectively, the results showed that a high-repetition-rate laser was easier to damage CMOS compared to single-shot laser.

Paper Details

Date Published: 19 September 2013
PDF: 6 pages
Proc. SPIE 8905, International Symposium on Photoelectronic Detection and Imaging 2013: Laser Sensing and Imaging and Applications, 890521 (19 September 2013); doi: 10.1117/12.2034724
Show Author Affiliations
Feng Guo, National Univ. of Defense Technology (China)
Rongzhen Zhu, National Univ. of Defense Technology (China)
Ang Wang, National Univ. of Defense Technology (China)
Xiang’ai Cheng, National Univ. of Defense Technology (China)

Published in SPIE Proceedings Vol. 8905:
International Symposium on Photoelectronic Detection and Imaging 2013: Laser Sensing and Imaging and Applications
Farzin Amzajerdian; Astrid Aksnes; Weibiao Chen; Chunqing Gao; Yongchao Zheng; Cheng Wang, Editor(s)

© SPIE. Terms of Use
Back to Top