Share Email Print
cover

Proceedings Paper

Comparison of resolution characteristics between exponential-doping and uniform-doping GaN photocathodes
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The studies of quantum efficiency, electronic energy distribution and stability are highly concerned in the application of Negative electron affinity (NEA) gallium nitride (GaN) photocathodes while the resolution of photocathodes are concerned rarely. The resolutions of some image intensifiers are smaller than computational value partly because of ignoring the resolution of photocathodes. To a certain extent, the resolutions of image intensifiers are influenced by photocathodes. Electronic transverse diffusion is the main cause of decreasing the resolution of photocathodes whereas the exponential-doping structure can reduce its influence. In this paper, the resolution characteristics of photocathodes have been studied by using the modulation transfer function (MTF) method. The MTF expressions of transmission-mode exponential-doping photocathodes have been obtained by solving the two-dimensional continuity equations. According to the MTF expressions, the resolution characteristics between exponential-doping and uniform-doping GaN photocathodes are calculated theoretically and analyzed comparatively. At the same time, the relationships between resolution and thickness of the emission layer Te, electron diffusion length LD are researched in detail. The calculated results show that, compared with the uniform-doping photocathode, the exponential-doping structure can increase the resolution of photocathode evidently. The resolution of exponential-doping GaN photocathode is improved distinctly when the spatial frequency varies from 400 to 800 lp/mm. The MTF characteristics approach gradually when f increases or decreases. Let f =600 lp/mm, the resolution increases by 20%-48% approximately. The constant built-in electric field for exponential-doping GaN photocathode can increase the resolution of photocathode. The improvement of resolution is different from decreasing Te, LD or increasing the recombination velocity of back-interface which are at the cost of reducing the quantum efficiency of photocathode. Therefore, the MTF expressions of transmission-mode exponential-doping photocathode play a positive role in improving the resolution of ultraviolet detector and optimizing the structural design of GaN photocathode.

Paper Details

Date Published: 16 August 2013
PDF: 6 pages
Proc. SPIE 8912, International Symposium on Photoelectronic Detection and Imaging 2013: Low-Light-Level Technology and Applications, 89121D (16 August 2013); doi: 10.1117/12.2034701
Show Author Affiliations
Hong-gang Wang, Nanjing Univ. of Science and Technology (China)
Yun-sheng Qian, Nanjing Univ. of Science and Technology (China)
Liu-bing Lu, CNGC North Laser Technology Group Co., Ltd. (China)
Hong-chang Cheng, Science and Technology on Low-Light-Level Night Vision Lab. (China)
Ben-kang Chang, Nanjing Univ. of Science and Technology (China)


Published in SPIE Proceedings Vol. 8912:
International Symposium on Photoelectronic Detection and Imaging 2013: Low-Light-Level Technology and Applications
Benkang Chang; Hui Guo, Editor(s)

© SPIE. Terms of Use
Back to Top