Share Email Print
cover

Proceedings Paper

A novel microfluidic chip based on fiber sensor
Author(s): Bo Su; Guoteng Duan; Xue Han
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

We have fabricated a novel microfluidic chip based on fiber sensor with casting PDMS method. The optical fiber is used to transmit excitation light, so the diameter of the excitation beam is decreased to 93μm. In order to improve the coupling efficiency of the excitation light in the fiber, the optical fiber collimation device is used to couple beam. The microfluidic chip consists of multimode optical fiber, PDMS cover slab and PDMS base slab. The mould of cover slab is made through twice exposal, however the base slab is achieved using once exposal only. The depths of microfluidic channel and optical fiber channel in the PDMS cover slab are 50μm and 90μm, respectively, and the optical fiber channel in the PDMS base slab is only 40μm. This design can make the centers of the microfluidic channel and the fiber channel in the same point, so the microfluidic channel and the optical fiber can be aimed at easily. In addition, the size of microfluidic channel depth is near the size of light spot of optical fiber, so the detection sensitivity is improved without using the optical focusing system. The detection system of the microfluidic chip is manufactured and it composed of high voltage modules, darkroom, LED light source, photomultiplier and data acquisition circuit, moreover, the software of the detection system is developed. The high voltage modules with four 2kV are used to control the sample amount in the separation channel, so the sensitivity is improved. The microfluidic chip is placed in the darkroom to avoid the interference of external light. The high brightness blue light emitting diode (LED) is used as excitation light sources for inducing fluorescence detection through coupling the LED light into the optical fiber. The photomultiplier is used to amplify the fluorescence signals and the function of data acquisition circuit is data collection and data processing. Under the control of software, the experiment process can be implemented easily. As an application, the microfluidic chip is tested on the detection system for the separation experiment of FITC fluorescein and FITC-labeled amino acid. The experiments justify the feasibility of the chip.

Paper Details

Date Published: 29 August 2013
PDF: 8 pages
Proc. SPIE 8914, International Symposium on Photoelectronic Detection and Imaging 2013: Fiber Optic Sensors and Optical Coherence Tomography, 891413 (29 August 2013); doi: 10.1117/12.2034685
Show Author Affiliations
Bo Su, Capital Normal Univ. (China)
Guoteng Duan, Beijing Institute of Technology (China)
Xue Han, Capital Normal Univ. (China)


Published in SPIE Proceedings Vol. 8914:
International Symposium on Photoelectronic Detection and Imaging 2013: Fiber Optic Sensors and Optical Coherence Tomography
Yunjiang Rao, Editor(s)

© SPIE. Terms of Use
Back to Top