Share Email Print
cover

Proceedings Paper

Flexibly controllable multi-pulse mode-locked MOPA Yb-doped fiber laser in all normal dispersion regime
Author(s): Chenxi Bu; Chinhua Wang
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

A Controllable, high energy, all normal dispersion (ANDi), passively mode-locked Yb-doped fiber laser is demonstrated with a Master Oscillator Power-Amplifier (MOPA) structure. The mode-locking is achieved by nonlinear polarization evolution (NPE). different types of laser pulse are achieved from fundamental mode-locked (FML) single pulse to twin pulse and then to harmonically mode-locked (HML) pulses (the maximum order is 7 times) by adjusting quarter-wave plates (QWPS) and a half-wave plate (HWP) in our system. Using a cascaded long-period fiber grating as the spectral filter, the center wavelength of our laser is fixed at 1034nm.The repetition frequency rate of the FML pulse is 1.53MHz with a pulse width of 817ps. The maximum average energy is 450 mW and the maximum pulse energy of FML single pulse is 294 nJ. Besides, the 517nm green laser output is also achieved by using a LiB3O5 (LBO) crystal as the frequency doubling crystal. The maximum average of the green pulse is 4.71mW.

Paper Details

Date Published: 17 September 2013
PDF: 7 pages
Proc. SPIE 8904, International Symposium on Photoelectronic Detection and Imaging 2013: High Power Lasers and Applications, 89041D (17 September 2013); doi: 10.1117/12.2034681
Show Author Affiliations
Chenxi Bu, Soochow Univ. (China)
Chinhua Wang, Soochow Univ. (China)


Published in SPIE Proceedings Vol. 8904:
International Symposium on Photoelectronic Detection and Imaging 2013: High Power Lasers and Applications
Andreas Tünnermann; Zejin Liu; Pu Wang; Chun Tang, Editor(s)

© SPIE. Terms of Use
Back to Top