Share Email Print
cover

Proceedings Paper

Determination of geometrical form factor in coaxial lidar system
Author(s): Cong-hui Hao; Pan Guo; He Chen; Yin-chao Zhang; Si-ying Chen
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In recent years, lidar system has become a very successful tool in environmental exploration and remote sensing of the atmosphere. However, geometric form factor, which is inherently determined by the lidar structure, restricts the accuracy of the lidar data at nearby distances. In order to get the effective atmospheric parameter information close to the ground from lidar system, it is essential to obtain its geometric form factor. The ratio of the energy received by the photo detector to the energy reached the telescope primary mirror is defined as geometric form factor, which is affected by three facts. First, the overlap of the transmitted beam with the receiver system is often incomplete, so only a part of the return signal goes into the receiving telescope. Second, the backscattering signals from small and medium distances can not be focused well on the focal plane, so only part of them can be sensed by the detector. Third, the obstruction of the secondary mirror can also increase the light loss. By analyzing these three facts, we described a geometric optical calculative method for determining the geometrical form factor in a Cassegrain telescope system. By reviewing the structure of the coaxial and biaxial transmitter and receiver system, and considering the above three reasons, a simple model is applied to demonstrate the image formation of a circular object of diameter G positioned a distance R close to a lidar detection unit. Then the position between the illumination e of the focal plane and telescope aperture s is discussed, and a function to describe the geometrical form factor can thus be derived in both coaxial and non-coaxial lidar cases. Finally, two different lidar systems are compared with simulation method in order to validate the proposed model.

Paper Details

Date Published: 19 September 2013
PDF: 8 pages
Proc. SPIE 8905, International Symposium on Photoelectronic Detection and Imaging 2013: Laser Sensing and Imaging and Applications, 89051V (19 September 2013); doi: 10.1117/12.2034667
Show Author Affiliations
Cong-hui Hao, Beijing Institute of Technology (China)
Pan Guo, Beijing Institute of Technology (China)
He Chen, Beijing Institute of Technology (China)
Yin-chao Zhang, Beijing Institute of Technology (China)
Si-ying Chen, Beijing Institute of Technology (China)


Published in SPIE Proceedings Vol. 8905:
International Symposium on Photoelectronic Detection and Imaging 2013: Laser Sensing and Imaging and Applications
Farzin Amzajerdian; Astrid Aksnes; Weibiao Chen; Chunqing Gao; Yongchao Zheng; Cheng Wang, Editor(s)

© SPIE. Terms of Use
Back to Top