Share Email Print
cover

Proceedings Paper

Vacuum packaging of InGaAs focal plane array with four-stage thermoelectric cooler
Author(s): De-feng Mo; Da-fu Liu; Li-yi Yang; Qin-fei Xu; Xue Li
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The InGaAs focal plane array (FPA) detectors, covering the near-infrared 1~2.4 μm wavelength range, have been developed for application in space-based spectroscopy of the Earth atmosphere. This paper shows an all-metal vacuum package design for area array InGaAs detector of 1024×64 pixels, and its architecture will be given. Four-stage thermoelectric cooler (TEC) is used to cool down the FPA chip. To acquire high heat dissipation for TEC’s Joule-heat, tungsten copper (CuW80) and kovar (4J29) is used as motherboard and cavity material respectively which joined by brazing. The heat loss including conduction, convection and radiation is analyzed. Finite element model is established to analyze the temperature uniformity of the chip substrate which is made of aluminum nitride (AlN). The performance of The TEC with and without heat load in vacuum condition is tested. The results show that the heat load has little influence to current-voltage relationship of TEC. The temperature difference (ΔT) increases as the input current increases. A linear relationship exists between heat load and ΔT of the TEC. Theoretical analysis and calculation show that the heat loss of radiation and conduction is about 187 mW and 82 mW respectively. Considering the Joule-heat of readout circuit and the heat loss of radiation and conduction, the FPA for a 220 K operation at room temperature can be achieved. As the thickness of AlN chip substrate is thicker than 1 millimeter, the temperature difference can be less than 0.3 K.

Paper Details

Date Published: 11 September 2013
PDF: 7 pages
Proc. SPIE 8907, International Symposium on Photoelectronic Detection and Imaging 2013: Infrared Imaging and Applications, 89073T (11 September 2013); doi: 10.1117/12.2034203
Show Author Affiliations
De-feng Mo, Shanghai Institute of Technical Physics (China)
Da-fu Liu, Shanghai Institute of Technical Physics (China)
Li-yi Yang, Shanghai Institute of Technical Physics (China)
Qin-fei Xu, Shanghai Institute of Technical Physics (China)
Xue Li, Shanghai Institute of Technical Physics (China)


Published in SPIE Proceedings Vol. 8907:
International Symposium on Photoelectronic Detection and Imaging 2013: Infrared Imaging and Applications
Haimei Gong; Zelin Shi; Qian Chen; Jin Lu, Editor(s)

© SPIE. Terms of Use
Back to Top