Share Email Print
cover

Proceedings Paper

Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 μm
Author(s): Rajesh Thapa; Dan Rhonehouse; Dan Nguyen; Kort Wiersma; Chris Smith; Jie Zong; Arturo Chavez-Pirson
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Mid-infrared sources are a key enabling technology for various applications such as remote chemical sensing, defense communications and countermeasures, and bio-photonic diagnostics and therapeutics. Conventional mid-IR sources include optical parametric amplifiers, quantum cascade lasers, synchrotron and free electron lasers. An all-fiber approach to generate a high power, single mode beam with extremely wide (1μm-5μm) and simultaneous wavelength coverage has significant advantages in terms of reliability (no moving parts or alignment), room temperature operation, size, weight, and power efficiency. Here, we report single mode, high power extended wavelength coverage (1μm to 5μm) supercontinuum generation using a tellurite-based dispersion managed nonlinear fiber and an all-fiber based short pulse (20 ps), single mode pump source. We have developed this mid IR supercontinuum source based on highly purified solid-core tellurite glass fibers that are waveguide engineered for dispersion-zero matching with Tm-doped pulsed fiber laser pumps. The conversion efficiency from 1922nm pump to mid IR (2μm-5μm) supercontinuum is greater than 30%, and approaching 60% for the full spectrum. We have achieved > 1.2W covering from 1μm to 5μm with 2W of pump. In particular, the wavelength region above 4μm has been difficult to cover with supercontinuum sources based on ZBLAN or chalcogenide fibers. In contrast to that, our nonlinear tellurite fibers have a wider transparency window free of unwanted absorption, and are highly suited for extending the long wavelength emission above 4μm. We achieve spectral power density at 4.1μm already exceeding 0.2mW/nm and with potential for higher by scaling of pump power.

Paper Details

Date Published: 15 October 2013
PDF: 8 pages
Proc. SPIE 8898, Technologies for Optical Countermeasures X; and High-Power Lasers 2013: Technology and Systems, 889808 (15 October 2013); doi: 10.1117/12.2033926
Show Author Affiliations
Rajesh Thapa, NP Photonics, Inc. (United States)
Dan Rhonehouse, NP Photonics, Inc. (United States)
Dan Nguyen, NP Photonics, Inc. (United States)
Kort Wiersma, NP Photonics, Inc. (United States)
Chris Smith, NP Photonics, Inc. (United States)
Jie Zong, NP Photonics, Inc. (United States)
Arturo Chavez-Pirson, NP Photonics, Inc. (United States)


Published in SPIE Proceedings Vol. 8898:
Technologies for Optical Countermeasures X; and High-Power Lasers 2013: Technology and Systems
David H. Titterton; Harro Ackermann; Willy L. Bohn; Mark A. Richardson; Robert J. Grasso, Editor(s)

© SPIE. Terms of Use
Back to Top