Share Email Print
cover

Proceedings Paper

Engineering the propagation of high-k bulk plasmonic waves in multilayer hyperbolic metamaterials by multiscale structuring
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Propagation of large-wavevector bulk plasmonic waves in multilayer hyperbolic metamaterials (HMMs) with two levels of structuring is theoretically studied. It is shown that when the parameters of a subwavelength metal-dielectric multilayer (“substructure”) are modulated (“superstructured”) on a larger, wavelength scale, the propagation of bulk plasmon polaritons in the resulting multiscale HMM is subject to photonic band gap phenomena. A great degree of control over such plasmons can be exerted by varying the superstructure geometry. As an example, Bragg reflection and Fabry-Perot resonances are demonstrated in multiscale HMMs with periodic superstructures. More complicated, aperiodically ordered superstructures are also considered, with fractal Cantor-like multiscale HMMs exhibiting characteristic self-similar spectral signatures in the high-k band. The multiscale HMM concept is shown to be a promising platform for using high-k bulk plasmonic waves as a new kind of information carriers, which can be used in far-field subwavelength imaging and plasmonic communication.

Paper Details

Date Published: 11 October 2013
PDF: 10 pages
Proc. SPIE 8915, Photonics North 2013, 891512 (11 October 2013); doi: 10.1117/12.2033516
Show Author Affiliations
Sergei V. Zhukovsky, Techincal Univ. of Denmark (Denmark)
Andrei V. Lavrinenko, Techincal Univ. of Denmark (Denmark)
J. E. Sipe, Univ. of Toronto (Canada)


Published in SPIE Proceedings Vol. 8915:
Photonics North 2013
Pavel Cheben; Jens Schmid; Caroline Boudoux; Lawrence R. Chen; André Delâge; Siegfried Janz; Raman Kashyap; David J. Lockwood; Hans-Peter Loock; Zetian Mi, Editor(s)

© SPIE. Terms of Use
Back to Top