Share Email Print
cover

Proceedings Paper

Preparation and properties on hollow nano-structured smoke material
Author(s): Xiang-cui Liu; Meng-yan Dai; Guo-feng Fang; Wei-dong Shi; Xiang Cheng; Hai-feng Liu; Tong Zhang
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In recent years, the weapon systems of laser guidance and infrared (IR) imaging guidance have been widely used in modern warfare because of their high precision and strong anti-interference. Notwithstanding, military smoke, as a rapid and effective passive jamming means, can effectively counteract the attack of enemy precision-guided weapons by scattering and absorbability. Conventional smoke has good attenuation capability only to visible light (0.4-0.76 μm), but hardly any effect to other electromagnetic wave band. The weapon systems of laser guidance and IR imaging guidance usually work in broad band, including near IR (1-3 μm), middle IR (3-5 μm), far IR (8-14 μm), and so on. Accordingly, exploiting and using new efficient obscurant materials, which is one of the important factors that develop smoke technology, have become a focus and attracted more interests around the world. Then nano-structured materials that are developing very quickly have turned into our new choice. Hollow nano-structured materials (HNSM) have many special properties because of their nano-size wall-thickness and sub-micron grain-size. After a lot of HNSM were synthesized in this paper, their physical and chemical properties, including grain size, phase composition, microstructure, optical properties and resistivity were tested and analysed. Then the experimental results of the optical properties showed that HNSM exhibit excellent wave-absorbing ability in ultraviolet, visible and infrared regions. On the basis of the physicochemmical properties, HNSM are firstly applied in smoke technology field. And the obscuration performance of HNSM smoke was tested in smoke chamber. The testing waveband included 1.06μm and 10.6μm laser, 3-5μm and 8-14μm IR radiation. Then the main parameters were obtained, including the attenuation rate, the transmission rate, the mass extinction coefficient, the efficiency obscuring time, and the sedimentation rate, etc. The main parameters of HNSM smoke were contrasted in detail with graphite powder smoke agent. The results showed that HNSM smoke possesses better obscuration capability compared with the smoke performance of conventional materials (such as HC, RP, oil, carbon black, and graphite powder). Therefore, they are new smoke obscurant materials which can effectively interfere with broadband electromagnetic radiation, including 1.06 μm and 10.6 μm laser, 3-5 μm and 8-14 μm IR waveband.

Paper Details

Date Published: 11 September 2013
PDF: 8 pages
Proc. SPIE 8907, International Symposium on Photoelectronic Detection and Imaging 2013: Infrared Imaging and Applications, 89072P (11 September 2013); doi: 10.1117/12.2033126
Show Author Affiliations
Xiang-cui Liu, Research Institute of Chemical Defence (China)
Meng-yan Dai, Research Institute of Chemical Defence (China)
Guo-feng Fang, Research Institute of Chemical Defence (China)
Wei-dong Shi, Research Institute of Chemical Defence (China)
Xiang Cheng, Research Institute of Chemical Defence (China)
Hai-feng Liu, Research Institute of Chemical Defence (China)
Tong Zhang, Research Institute of Chemical Defence (China)


Published in SPIE Proceedings Vol. 8907:
International Symposium on Photoelectronic Detection and Imaging 2013: Infrared Imaging and Applications
Haimei Gong; Zelin Shi; Qian Chen; Jin Lu, Editor(s)

© SPIE. Terms of Use
Back to Top