Share Email Print
cover

Proceedings Paper

A real-time autostereoscopic display method based on partial sub-pixel by general GPU processing
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

With the progress of 3D technology, the huge computing capacity for the real-time autostereoscopic display is required. Because of complicated sub-pixel allocating, masks providing arranged sub-pixels are fabricated to reduce real-time computation. However, the binary mask has inherent drawbacks. In order to solve these problems, weighted masks are used in displaying based on partial sub-pixel. Nevertheless, the corresponding computations will be tremendously growing and unbearable for CPU. To improve calculating speed, Graphics Processing Unit (GPU) processing with parallel computing ability is adopted. Here the principle of partial sub-pixel is presented, and the texture array of Direct3D 10 is used to increase the number of computable textures. When dealing with a HD display and multi-viewpoints, a low level GPU is still able to permit a fluent real time displaying, while the performance of high level CPU is really not acceptable. Meanwhile, after using texture array, the performance of D3D10 could be double, and sometimes be triple faster than D3D9. There are several distinguishing features for the proposed method, such as the good portability, less overhead and good stability. The GPU display system could also be used for the future Ultra HD autostereoscopic display.

Paper Details

Date Published: 20 August 2013
PDF: 8 pages
Proc. SPIE 8913, International Symposium on Photoelectronic Detection and Imaging 2013: Optical Storage and Display Technology, 89130G (20 August 2013); doi: 10.1117/12.2033041
Show Author Affiliations
Duo Chen, Beijing Univ. of Posts and Telecommunications (China)
Xinzhu Sang, Beijing Univ. of Posts and Telecommunications (China)
Yuanfa Cai, Beijing Univ. of Posts and Telecommunications (China)


Published in SPIE Proceedings Vol. 8913:
International Symposium on Photoelectronic Detection and Imaging 2013: Optical Storage and Display Technology
Changsheng Xie; Yikai Su; Liangcai Cao, Editor(s)

© SPIE. Terms of Use
Back to Top