Share Email Print
cover

Proceedings Paper

Effect of the incidence angle to free space optical communication based on cat-eye modulating retro-reflector
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Based on the cat-eye effect of optical system, free space optical communication based on cat-eye modulating retro-reflector can build communication link rapidly. Compared to classical free space optical communication system, system based on cat-eye modulating retro-reflector has great advantages such as building communication link more rapidly, a passive terminal is smaller, lighter and lower power consuming. The incident angle is an important factor of cat-eye effect, so it will affect the retro-reflecting communication link. In this paper, the principle and work flow of free space optical communication based on cat-eye modulating retro-reflector were introduced. Then, using the theory of geometric optics, the equivalent model of modulating retro-reflector with incidence angle was presented. The analytical solution of active area and retro-reflected light intensity of cat-eye modulating retro-reflector were given. Noise of PIN photodetector was analyzed, based on which, bit error rate of free space optical communication based on cat-eye modulating retro-reflector was presented. Finally, simulations were done to study the effect of incidence angle to the communication. The simulation results show that the incidence angle has little effect on active area and retro-reflected light intensity when the incidence beam is in the active field angle of cat-eye modulating retro-reflector. With certain system and condition, the communication link can rapidly be built when the incidence light beam is in the field angle, and the bit error rate increases greatly with link range. When link range is smaller than 35Km, the bit error rate is less than 10-16.

Paper Details

Date Published: 21 August 2013
PDF: 8 pages
Proc. SPIE 8906, International Symposium on Photoelectronic Detection and Imaging 2013: Laser Communication Technologies and Systems, 89060K (21 August 2013); doi: 10.1117/12.2032477
Show Author Affiliations
Lai-xian Zhang, Academy of Equipment (China)
Hua-yan Sun, Academy of Equipment (China)
Yan-zhong Zhao, Academy of Equipment (China)
Yong-hui Zheng, Academy of Equipment (China)
Cong-miao Shan, Academy of Equipment (China)


Published in SPIE Proceedings Vol. 8906:
International Symposium on Photoelectronic Detection and Imaging 2013: Laser Communication Technologies and Systems
Keith E. Wilson; Jing Ma; Liren Liu; Huilin Jiang; Xizheng Ke, Editor(s)

© SPIE. Terms of Use
Back to Top