Share Email Print
cover

Proceedings Paper

Short to long-wave IR detectors based on InAs/GaSb superlattices in multi-color application
Author(s): Jie Guo; Guowei Wang; Xu Lin; Ruiting Hao
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Recently excellent infrared detectors have been demonstrated using InAs/GaSb superlattice materials sensitive at wavelength from 3um to greater than 32um. Using empirical tight binding method (ETBM), different structures as InAs(xML)/GaSb(8ML), (x=2, 4, 6, 8) and InAs(14ML)/GaSb(7ML) were designed for various cut-off wavelengths from short to long IR wavelength. These materials were grown by MBE with valved cracker cells for arsenic and antimony on p-type GaSb(001) substrates. The microstructure and the bandgap Eg were verified by high resolution X-ray diffraction and photoresponse spectra. The temperature dependence of Eg and photoresponse responsivity Rv were studied. The differential resistance under zero bias R0 in MWIR photodiode was measured up to 106 ohms. The ideality factor in the range of 1.5 to 2.1 indicates the generation-recombination current and surface leakage current are the dominant leakage in the depletion region. These results will promote InAs/GaSb superlattices infrared detectors research in multi-color from short to long wave IR application.

Paper Details

Date Published: 11 September 2013
PDF: 6 pages
Proc. SPIE 8907, International Symposium on Photoelectronic Detection and Imaging 2013: Infrared Imaging and Applications, 89070R (11 September 2013); doi: 10.1117/12.2031647
Show Author Affiliations
Jie Guo, Yunnan Normal Univ. (China)
Guowei Wang, Institute of Semiconductors (China)
Xu Lin, Yunnan Normal Univ. (China)
Ruiting Hao, Yunnan Normal Univ. (China)


Published in SPIE Proceedings Vol. 8907:
International Symposium on Photoelectronic Detection and Imaging 2013: Infrared Imaging and Applications
Haimei Gong; Zelin Shi; Qian Chen; Jin Lu, Editor(s)

© SPIE. Terms of Use
Back to Top