Share Email Print

Proceedings Paper

Soil water content monitoring: a verification of thermal inertia approaches on low spatial, high temporal resolutions images
Author(s): Antonino Maltese; Fulvio Capodici; Guido D'Urso; Paolo Addesso; Maurizio Longo; Rita Montone; Rocco Restaino; Gemine Vivone
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Soil water content is directly connected with soil evaporation and plant transpiration processes; in particular, soil water content within the root zone, is readily available to evapotranspiration. Thus, in agricultural sciences, the assessment of the spatial distribution of soil water content could be of utmost importance in evaluating crop water requirement. In spite of limitations to applicability due to contingent cloud cover, water content of the upper part of the soil can be determined by applying the thermal inertia approach by coupling optical and thermal infrared images. The thermal inertia formulation, rigorously retrieved on bare soil, has been also verified on soils partially covered by vegetation. In each case, one of the crucial steps is the assessment of the phase difference between surface temperature and solar irradiation. Different approaches allow determining this latter parameter. To this aim, three formulations to retrieve the phase difference were tested: i) the first, assuming a spatially constant value based on the knowledge of the time when maximum surface temperature occurs; ii) other two methods, allowing determining its spatial distribution through three or four thermographies. In this framework, this research is focused to establish the simplest operational approach providing reliable results over time using low-resolution MODIS images collected over an agricultural area of South Italy (Campania). Temporal evolution of the remote sensing estimates have been compared to data collected by the micro-meteorological station installed in a vineyard within the area.

Paper Details

Date Published: 16 October 2013
PDF: 11 pages
Proc. SPIE 8887, Remote Sensing for Agriculture, Ecosystems, and Hydrology XV, 888711 (16 October 2013); doi: 10.1117/12.2030586
Show Author Affiliations
Antonino Maltese, Univ. degli Studi di Palermo (Italy)
Fulvio Capodici, Univ. degli Studi di Palermo (Italy)
Guido D'Urso, Univ. degli Studi di Napoli Federico II (Italy)
Paolo Addesso, Univ. degli Studi di Salerno (Italy)
Maurizio Longo, Univ. degli Studi di Salerno (Italy)
Rita Montone, Univ. degli Studi di Salerno (Italy)
Rocco Restaino, Univ. degli Studi di Salerno (Italy)
Gemine Vivone, Univ. degli Studi di Salerno (Italy)

Published in SPIE Proceedings Vol. 8887:
Remote Sensing for Agriculture, Ecosystems, and Hydrology XV
Christopher M. U. Neale; Antonino Maltese, Editor(s)

© SPIE. Terms of Use
Back to Top