Share Email Print
cover

Proceedings Paper

Numerical modeling of dielectrics electrocaloric effect near the ferroelectric-paraelectric phase transformation
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Dielectrics with great electrocaloric effect (ECE) have great potential to be applied in modern refrigeration industry. Compared with the traditional refrigeration technology, it is environmentally friendly and has a higher efficiency. Researchers have found that compared with ECE occurring in ferroelectric phase, ECE in paraelectric state is giant. This paper is determined on calculating the ECE of several kinds of polar dielectric material so as to find some materials with giant ECE. First, we investigate the theoretical framework of ECE near the Ferroelectric-Paraelectric phase transformation, and we show the formula derivation of ECE near the Ferroelectric-Paraelectric phase transformation in the analytical method of the calculus derivation. Then we deduce the expression of phenomenological study parameters. Finally, we calculate the maximum temperature change, entropy change and the mechanical work of several kinds of dielectrics based on the expression deduced. We successfully find some dielectrics with giant ECE. The paper should offer great help in finding the dielectrics with giant ECE, which is of great value in application.

Paper Details

Date Published: 9 August 2013
PDF: 12 pages
Proc. SPIE 8793, Fourth International Conference on Smart Materials and Nanotechnology in Engineering, 879317 (9 August 2013); doi: 10.1117/12.2029996
Show Author Affiliations
Yixing Wang, Harbin Institute of Technology (China)
Liwu Liu, Harbin Institute of Technology (China)
Yanju Liu, Harbin Institute of Technology (China)
Jinsong Leng, Harbin Institute of Technology (China)


Published in SPIE Proceedings Vol. 8793:
Fourth International Conference on Smart Materials and Nanotechnology in Engineering
Jayantha A. Epaarachchi; Alan Kin-tak Lau; Jinsong Leng, Editor(s)

© SPIE. Terms of Use
Back to Top