Share Email Print

Proceedings Paper

Novel testing facility for investigating wear on PGM sample tools
Author(s): Frank Bernhardt; Kyriakos Georgiadis; Olaf Dambon; Fritz Klocke
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

For the fabrication of highly precise glass optics, Precision Glass Molding (PGM) is the state-of-the-art replicative manufacturing process. However, the process efficiency is mainly determined by the service lifetime of the molding tools and, in particular, the performance of the protective coatings. Testing the lifetime in real molding machines is extremely cost and effort intensive. In a new testing facility the protective coating performance can be evaluated by systematically inducing tool wear under realistic process conditions. A high number of pressing cycles can be executed under minimal time and material effort, reducing the cost consumption for such coating validation tests significantly. In this paper, a fast method for evaluating the performance of coatings is provided. The machine concept and evaluation method are presented in comparison to the production conditions. Investigations are targeted on the similarities between tool wear in production and those induced in the testing facility. After inducing wear patterns on test specimens in the new facility, surface alterations are characterized with light microscopy. The results show similar degradation patterns as known from production, on the coated tools. The results presented show that the facility provides unique opportunity for optimizing coatings, but also glass compositions, for use in Precision Glass Molding.

Paper Details

Date Published: 15 October 2013
PDF: 8 pages
Proc. SPIE 8884, Optifab 2013, 88841V (15 October 2013); doi: 10.1117/12.2026995
Show Author Affiliations
Frank Bernhardt, Fraunhofer Institute for Production Technology IPT, Aachen (Germany)
Kyriakos Georgiadis, Fraunhofer Institute for Production Technology IPT, Aachen (Germany)
Olaf Dambon, Fraunhofer Institute for Production Technology IPT, Aachen (Germany)
Fritz Klocke, Fraunhofer Institute for Production Technology IPT, Aachen (Germany)

Published in SPIE Proceedings Vol. 8884:
Optifab 2013
Julie L. Bentley; Matthias Pfaff, Editor(s)

© SPIE. Terms of Use
Back to Top