Share Email Print

Proceedings Paper

Modeling ion induced effects in thin films and coatings for lunar and space environment applications
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Protective thin film coatings are important for many near-Earth and interplanetary space systems applications using photonic components, optical elements, solar cells and detector-sensor front surfaces to name but a few environmentally at-risk technologies. The near-Earth and natural space environment consists of known degradation processes induced within these technologies brought about by atomic oxygen, micrometeorite impacts, space debris and dust, solar generated charged particles, Van Allen belt trapped particles, and galactic cosmic radiation. This paper will focus on presenting the results of an investigation based on simulated ion-induced defect-modeling and nuclear irradiation testing of several innovative hybrid-polymeric self-cleaning hydrophobic coatings investigated for application to space photonic components, lunar surface, avionic and terrestrial applications. Data is reported regarding the radiation resistance of several hybrid polymer coatings containing various loadings of nanometer-sized TiO2 fillers for protecting sensors, structures, human and space vehicles from dust contamination found in space and on the Lunar and other planetary surfaces.

Paper Details

Date Published: 24 September 2013
PDF: 13 pages
Proc. SPIE 8876, Nanophotonics and Macrophotonics for Space Environments VII, 88760T (24 September 2013); doi: 10.1117/12.2026641
Show Author Affiliations
Edward W. Taylor, International Photonics Consultants, Inc. (United States)
Ronald Pirich, Independent Consultant and Sr. Research Advisor (United States)

Published in SPIE Proceedings Vol. 8876:
Nanophotonics and Macrophotonics for Space Environments VII
Edward W. Taylor; David A. Cardimona, Editor(s)

© SPIE. Terms of Use
Back to Top