Share Email Print

Proceedings Paper

New laser-based approaches to improve the passivation and rear contact quality in high efficiency crystalline silicon solar cells
Author(s): Carlos Molpeceres; Mónica Colina; David Muñoz-Martin; Isidro Martín; Pablo Ortega; Isabel Sánchez; Miguel B. Morales; Sara Lauzurica; Juan J. García-Ballesteros; Cristóbal Voz; Gema López; Ana-Belén Morales; Ramón Alcubilla
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Laser processing has been the tool of choice last years to develop improved concepts in contact formation for high efficiency crystalline silicon (c-Si) solar cells. New concepts based on standard laser fired contacts (LFC) or advanced laser doping (LD) techniques are optimal solutions for both the front and back contacts of a number of structures with growing interest in the c-Si PV industry. Nowadays, substantial efforts are underway to optimize these processes in order to be applied industrially in high efficiency concepts. However a critical issue in these devices is that, most of them, demand a very low thermal input during the fabrication sequence and a minimal damage of the structure during the laser irradiation process. Keeping these two objectives in mind, in this work we discuss the possibility of using laser-based processes to contact the rear side of silicon heterojunction (SHJ) solar cells in an approach fully compatible with the low temperature processing associated to these devices. First we discuss the possibility of using standard LFC techniques in the fabrication of SHJ cells on p-type substrates, studying in detail the effect of the laser wavelength on the contact quality. Secondly, we present an alternative strategy bearing in mind that a real challenge in the rear contact formation is to reduce the damage induced by the laser irradiation. This new approach is based on local laser doping techniques previously developed by our groups, to contact the rear side of p-type c-Si solar cells by means of laser processing before rear metallization of dielectric stacks containing Al2O3. In this work we demonstrate the possibility of using this new approach in SHJ cells with a distinct advantage over other standard LFC techniques.

Paper Details

Date Published: 16 September 2013
PDF: 11 pages
Proc. SPIE 8826, Laser Material Processing for Solar Energy Devices II, 882603 (16 September 2013); doi: 10.1117/12.2026202
Show Author Affiliations
Carlos Molpeceres, Univ. Politécnica de Madrid (Spain)
Mónica Colina, Univ. Politècnica de Catalunya (Spain)
David Muñoz-Martin, Univ. Politécnica de Madrid (Spain)
Isidro Martín, Univ. Politècnica de Catalunya (Spain)
Pablo Ortega, Univ. Politècnica de Catalunya (Spain)
Isabel Sánchez, Univ. Politécnica de Madrid (Spain)
Miguel B. Morales, Univ. Politécnica de Madrid (Spain)
Sara Lauzurica, Univ. Politécnica de Madrid (Spain)
Juan J. García-Ballesteros, Univ. Politécnica de Madrid (Spain)
Cristóbal Voz, Univ. Politècnica de Catalunya (Spain)
Gema López, Univ. Politècnica de Catalunya (Spain)
Ana-Belén Morales, Univ. Politècnica de Catalunya (Spain)
Ramón Alcubilla, Univ. Politècnica de Catalunya (Spain)

Published in SPIE Proceedings Vol. 8826:
Laser Material Processing for Solar Energy Devices II
Edward W. Reutzel, Editor(s)

© SPIE. Terms of Use
Back to Top