Share Email Print
cover

Proceedings Paper

Grating-over-lens concentrating photovoltaic spectrum splitting systems with volume holographic optical elements
Author(s): Juan M. Russo; Deming Zhang; Michael Gordon; Shelby D. Vorndran; Youchen Wu; Raymond K. Kostuk
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In grating-over-lens spectrum splitting designs, a planar transmission grating is placed at the entrance of a plano-convex lens. Part of the incident solar spectrum is diffracted at 15-30° from normal incidence to the lens. The diffracted spectral range comes to a focus at an off-axis point and the undiffracted spectrum comes to a focus on the optical axis of the lens. Since the diffracted wave is planar and off-axis, the off-axis focal points suffer from aberrations that increase system loss. Field curvature, chromatic and spherical aberrations are compensated using defocusing and a curved focal plane (approximated with each photovoltaic receiver). Coma is corrected by modifying the off-axis wavefront used in constructing the hologram. In this paper, we analyze the use of non-planar transmission gratings recorded using a conjugate object beam to modify the off-axis wavefront. Diverging sources are used as conjugate object and reference beams. The spherical waves are incident at the lens and the grating is recorded at the entrance aperture of the solar concentrator. The on-axis source is adjusted to produce an on-axis planar wavefront at the hologram plane. The off-axis source is approximated to a diffraction limited spot producing a non-planar off-axis wavefront on the hologram plane. Illumination with a planar AM1.5 spectrum reproduces an off-axis diffraction-limited spot on the focal plane. This paper presents ray trace and coupled wave theory simulations used to quantify the reduction in losses achieved with aberration correction.

Paper Details

Date Published: 9 September 2013
PDF: 8 pages
Proc. SPIE 8821, High and Low Concentrator Systems for Solar Electric Applications VIII, 882106 (9 September 2013); doi: 10.1117/12.2026020
Show Author Affiliations
Juan M. Russo, The Univ. of Arizona (United States)
Deming Zhang, The Univ. of Arizona (United States)
Michael Gordon, The Univ. of Arizona (United States)
Shelby D. Vorndran, The Univ. of Arizona (United States)
Youchen Wu, The Univ. of Arizona (United States)
Raymond K. Kostuk, The Univ. of Arizona (United States)


Published in SPIE Proceedings Vol. 8821:
High and Low Concentrator Systems for Solar Electric Applications VIII
Adam P. Plesniak, Editor(s)

© SPIE. Terms of Use
Back to Top