Share Email Print

Proceedings Paper

Beam shaping unit for micromachining
Author(s): Alexander Laskin; Nerijus Šiaulys; Gintas Šlekys; Vadim Laskin
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Uniform irradiance distribution of laser spot is highly advisable in various micromachining techniques like scribing, PCB and Through-Silicon Via (TSV) drilling, repair techniques in display making technologies. Scanning over whole working field with using popular 2- and 3-axis galvo mirror scanners is another important part of microprocessing systems. Therefore, combining of beam shaping optics, converting Gaussian to flattop (uniform) laser beam profile, with scanning optical heads is an insistent technical task. To provide flattop irradiance profile it is suggested to apply field mapping refractive beam shaping optics πShaper being characterized by some important features: low output divergence, high transmittance, extended depth of field, capability to work with TEM00 and multimode lasers, as result providing a freedom in building various optical systems. De-magnifying of flattop laser beam can be realized with using imaging technique; the imaging optical system to be composed from F-theta lens of scanning head and additional collimating system to be used right after a πShaper. One of the problems in this approach is implementation of compact design of the collimating part. As a solution it is suggested to apply a specially designed Beam Shaping Unit (BSU) to be installed between a laser and a scanning head and providing: conversion from Gaussian to flattop laser beam irradiance profile, compact collimator design, and functions of laser beam adjustment and adaptation to a laser and a scanning head used in particular equipment. There will be considered design features of refractive beam shapers πShaper and BSU, examples of optical layouts to generate flattop laser spots, which sizes span from several tens of microns to millimetres. Examples of real implementations and results of material processing will be presented as well.

Paper Details

Date Published: 28 September 2013
PDF: 18 pages
Proc. SPIE 8843, Laser Beam Shaping XIV, 88430G (28 September 2013); doi: 10.1117/12.2025985
Show Author Affiliations
Alexander Laskin, AdlOptica GmbH (Germany)
Nerijus Šiaulys, Altechna (Lithuania)
Gintas Šlekys, Altechna (Lithuania)
Vadim Laskin, AdlOptica GmbH (Germany)

Published in SPIE Proceedings Vol. 8843:
Laser Beam Shaping XIV
Andrew Forbes; Todd E. Lizotte, Editor(s)

© SPIE. Terms of Use
Back to Top