Share Email Print
cover

Proceedings Paper

Photonics on the mission to Mars
Author(s): Michael D Watson
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Human missions to Mars present some unique challenges for photonics devices. These devices will have exposure to many different space environments. During assembly they will be exposed to the earth orbiting environment. Upon departure they will need to function through the Earth’s Van Allen Radiation Belt. While the general interplanetary environment is less challenging than the radiation belt, they will operate in this environment for 18 months, subject to sudden saturation from solar flares. These components must continue to function properly through these saturation events presenting quite a challenge to photonic components, both optical and electronic. At Mars, the orbital environment is more benign than the Earth’s. Components used as part of the landing vehicles must also deal with the pervasive dust environment for 3 – 6 months. These assembly and mission execution environments provide every form of space environmental challenges to photonic components. This paper will briefly discuss each environment and the expectations on the components for successful operation over the life of the mission.

Paper Details

Date Published: 24 September 2013
PDF: 13 pages
Proc. SPIE 8876, Nanophotonics and Macrophotonics for Space Environments VII, 88760D (24 September 2013); doi: 10.1117/12.2025505
Show Author Affiliations
Michael D Watson, NASA Marshall Space Flight Ctr. (United States)


Published in SPIE Proceedings Vol. 8876:
Nanophotonics and Macrophotonics for Space Environments VII
Edward W. Taylor; David A. Cardimona, Editor(s)

© SPIE. Terms of Use
Back to Top