Share Email Print
cover

Proceedings Paper

ACE-FTS on SCISAT: 10th year on-orbit anniversary
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The Atmospheric Chemistry Experiment (ACE) is a mission on-board the Canadian Space Agency’s (CSA) SCISAT-1. ACE is composed of a suite of instruments consisting of an infrared Fourier Transform Spectrometer (FTS) coupled with an auxiliary imager monitoring aerosols based on the extinction of solar radiation using two filtered detectors (visible and near infrared). A suntracker is also included to provide fine pointing during occultation. A second instrument, MAESTRO, is a spectrophotometer covering the near ultra-violet to the near infrared. In combination, the instrument payload covers the spectral range from 0.25 to 13.3 μm. The ACE mission came about from a need to better understand the chemical and dynamical processes that control the distribution of ozone in the upper troposphere and stratosphere, with particular emphasis on the Arctic region. Measurement of the vertical distribution of molecular species in these portions of the atmosphere permits elucidation of the key chemical and dynamical processes. The ACE-FTS measures the vertical distributions of trace gases as well as polar stratospheric clouds, aerosols, and temperature by a solar occultation technique from low earth orbit. By measuring solar radiation at high spectral resolution as it passes through different layers of the atmosphere, the absorption thus measured provides information on vertical profiles of atmospheric constituents, temperature, and pressure. Detailed and sensitive vertical distribution of trace gases help to better understand the chemical processes not only for ozone formation and destruction but also for other dynamic processes in the atmosphere. The ACE/SCISAT-1 satellite was successfully launched by NASA on August 12, 2003, and has been successfully operating since, now celebrating its 10th year on-orbit anniversary. This paper presents a summary of the heritage and development history of the ACE-FTS instrument. Design challenges and solutions are related. The actual on-orbit performance is presented, and the health status of the instrument payload is discussed. Potential future follow-on missions are finally introduced.

Paper Details

Date Published: 19 September 2013
PDF: 14 pages
Proc. SPIE 8867, Infrared Remote Sensing and Instrumentation XXI, 88670J (19 September 2013); doi: 10.1117/12.2024985
Show Author Affiliations
Richard L. Lachance, ABB Analytical Measurement (Canada)
Henry L. Buijs, ABB Analytical Measurement (Canada)
Marc-André Soucy, ABB Analytical Measurement (Canada)


Published in SPIE Proceedings Vol. 8867:
Infrared Remote Sensing and Instrumentation XXI
Marija Strojnik Scholl; Gonzalo Páez, Editor(s)

© SPIE. Terms of Use
Back to Top