Share Email Print
cover

Proceedings Paper

All solution processed blue multi-layer light emitting diodes realized by thermal layer stabilization and orthogonal solvent processing
Author(s): Sebastian Nau; Roman Trattnig; Leonid Pevzner; Monika Jäger; Raphael Schlesinger; Marco V. Nardi; Giovanni Ligorio; Christos Christodoulou; Niels Schulte; Stefanie Winkler; Johannes Frisch; Antje Vollmer; Martin Baumgarten; Stefan Sax; Norbert Koch; Klaus Müllen; Emil J. W. List-Kratochvil
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Herein we report on the fabrication and the properties of two highly efficient blue light emitting multilayer polymer light emitting diodes (PLEDs). The first device structure combines a thermally stabilized polymer with a material processed from an orthogonal solvent, allowing for the fabrication of a triple layer structure from solution. The well known poly(9,9-dioctyl-fluorene-co-N-(4-butylphenyl)-diphenylamine) (TFB), which can be stabilized in a bake-out procedure, was used as a hole transporting layer. A novel pyrene – triphenylamine (PPyrTPA) copolymer was used as emissive layer. The stack was finalized by a poly(fluorene) - derivative with polar side-chains, therefore being soluble in a polar solvent which allows for the deposition onto PPyrTPA without redissolving. The resulting PLED showed bright-blue electroluminescence (CIE1931 coordinates x=0.163; y=0.216) with a high efficiency of 1.42 cd/A and a peak luminescence of 16500 cd/m². The second presented device configuration comprises a thermally stabilized indenofluorene – triphenylamine copolymer acting as hole transporter, and an emissive copolymer with building blocks specifically designed for blue light emission, effective charge carrier injection and transport as well as for exciton generation. This multilayer PLED led to deep-blue emission (CIE1931 x=0.144; y=0.129) with a remarkably high device efficiency of 9.7 cd/A. Additionally, atomic force microscopy was carried out to investigate the film morphology of the components of the stack and x-ray photoemission spectroscopy was performed to ensure a full coverage of the materials on top of each other. Ultraviolet photoemission spectroscopy confirmed the desired type-II band level offsets on the individual interfaces.

Paper Details

Date Published: 27 September 2013
PDF: 12 pages
Proc. SPIE 8829, Organic Light Emitting Materials and Devices XVII, 88290Z (27 September 2013); doi: 10.1117/12.2024146
Show Author Affiliations
Sebastian Nau, NanoTecCenter Weiz Forschungsgesellschaft (Austria)
Roman Trattnig, NanoTecCenter Weiz Forschungsgesellschaft (Austria)
Leonid Pevzner, Max-Planck-Institut für Polymerforschung (Germany)
Monika Jäger, NanoTecCenter Weiz Forschungsgesellschaft mbH (Germany)
Raphael Schlesinger, Humbold-Univ. zu Berlin (Germany)
Marco V. Nardi, Humbold-Univ. zu Berlin (Germany)
Giovanni Ligorio, Humbold-Univ. zu Berlin (Germany)
Christos Christodoulou, Humbold-Univ. zu Berlin (Germany)
Niels Schulte, Merck KGaA (Germany)
Stefanie Winkler, Helmholz Zentrum Berlin für Materialien und Energie GmbH (Germany)
Johannes Frisch, Humbold-Univ. zu Berlin (Germany)
Antje Vollmer, Helmholz Zentrum Berlin für Materialien und Energie GmbH (Germany)
Martin Baumgarten, Max-Planck-Institut für Polymerforschung (Germany)
Stefan Sax, NanoTecCenter Weiz Forschungsgesellschaft mbH (Austria)
Norbert Koch, Humboldt-Univ. zu Berlin (Germany)
Helmholz Zentrum Berlin für Materialien und Energie GmbH (Germany)
Klaus Müllen, Max-Planck-Institut für Polymerforschung (Germany)
Emil J. W. List-Kratochvil, Graz Univ.of Technology (Austria)
NanoTecCtr. Weiz Forschungsgesellschaft mbH (Austria)


Published in SPIE Proceedings Vol. 8829:
Organic Light Emitting Materials and Devices XVII
Franky So; Chihaya Adachi, Editor(s)

© SPIE. Terms of Use
Back to Top