Share Email Print

Proceedings Paper

Spatial heterodyne spectrometer: modeling and interferogram processing for calibrated spectral radiance measurements
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This work presents a radiometric model of a spatial heterodyne spectrometer (SHS) and a corresponding interferogram-processing algorithm for the calculation of calibrated spectral radiance measurements. The SHS relies on Fourier Transform Spectroscopy (FTS) principles, and shares design similarities with the Michelson Interferometer. The advantages of the SHS design, including the lack of moving parts, high throughput, and instantaneous spectral measurements, make it suitable as a eld-deployable instrument. Operating in the long-wave infrared (LWIR), the imaging SHS design example included provides the capability of performing chemical detection based on re ectance and emissivity properties of surfaces of organic compounds. This LWIR SHS model outputs realistic, interferometric data and serves as a tool to nd optimal SHS design parameters for desired performance requirements and system application. It also assists in the data analysis and system characterization. The interferogram-processing algorithm performs at- elding and phase corrections as well as apodization before recovering the measured spectral radiance from the recorded interferogram via the Inverse Fourier Transform (IFT). The model and processing algorithm demonstrate results comparable to those in the literature with a noise-equivalent change in temperature of 0.35K. Additional experiments show the algorithm's real-time processing capability, indicating the LWIR SHS system presented is feasible.

Paper Details

Date Published: 23 September 2013
PDF: 14 pages
Proc. SPIE 8870, Imaging Spectrometry XVIII, 88700R (23 September 2013); doi: 10.1117/12.2023765
Show Author Affiliations
Cara P. Perkins, Rochester Institute of Technology (United States)
John P. Kerekes, Rochester Institute of Technology (United States)
Michael G. Gartley, Rochester Institute of Technology (United States)

Published in SPIE Proceedings Vol. 8870:
Imaging Spectrometry XVIII
Pantazis Mouroulis; Thomas S. Pagano, Editor(s)

© SPIE. Terms of Use
Back to Top