Share Email Print
cover

Proceedings Paper

Compact CMOS analog readout circuit for photon counting applications
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The design, simulation results and experimental characterization of a compact analog readout circuit for photon counting applications are presented in this paper. Two linear test arrays of 40 pixels with 25 μm pixel pitch have been fabricated in a 0.15 μm CMOS technology. Each pixel of the array consists of a Single-Photon Avalanche Diode (SPAD), a quenching circuit, a time-gating circuit and an analog counter. Each input pulse corresponding to a SPAD avalanche event is converted to a step in the output voltage. Along with compactness, the circuit was designed targeting low power consumption, good output linearity and sub-nanosecond timing resolution. The circuit features 8.6% pixel output nonuniformity and 1.1 % non-linearity. The gating circuit provides the sub-nanosecond window of 0.95 ns at FWHM. Consisting of a small number of transistors and occupying only 238μm2, this approach is suitable for the design of SPAD-based image sensors with high spatial resolution.

Paper Details

Date Published: 6 May 2013
PDF: 9 pages
Proc. SPIE 8773, Photon Counting Applications IV; and Quantum Optics and Quantum Information Transfer and Processing, 877305 (6 May 2013); doi: 10.1117/12.2020975
Show Author Affiliations
Ekaterina Panina, Univ. of Trento (Italy)
Lucio Pancheri, Univ. of Trento (Italy)
Gian-Franco Dalla Betta, Univ. of Trento (Italy)
Leonardo Gasparini, Fondazione Bruno Kessler (Italy)
David Stoppa, Fondazione Bruno Kessler (Italy)


Published in SPIE Proceedings Vol. 8773:
Photon Counting Applications IV; and Quantum Optics and Quantum Information Transfer and Processing
Jaromír Fiurásek; Ivan Prochazka; Roman Sobolewski, Editor(s)

© SPIE. Terms of Use
Back to Top