Share Email Print
cover

Proceedings Paper

Hidden variables: basically unfolded
Author(s): E. H. Berloffa
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

"Hidden Variables" in QM are entangled with dipole elongation (ao) and linewidth (η). It turned out the quantity ao 2/η plays a dominant role. Rules of QM transition themself are not questioned. This quantity can be fixed for a "single" transition (no interaction with other atoms or molecules) as well as for an ensemble within a thermal bath, and when developed further unveils details of radiating matter especially when the linewidth of the radiating source is precisely known. In principle a "single" isolated local photon emanated by an adequate quantum transition is not detectable. Stepping towards non-thermal radiation sources (lasers) quantitative assertions can be made in regard of entanglement respectively the lateral dimension affected by such a process. Moreover, this concept applied to γ- radiation reveals inherent linewidths of γ-ray transitions fixes the dimension such emanation stems from and predominantly this lies within the influence sphere of one nucleon. A further aspect of this investigation makes it obvious: The Stefan-Boltzmann constant is not natural; in fact it is a composition of the constants of Planck and Boltzmann and the velocity of light as well. Exemplary analyzing a specific hydrogen line in the solar spectrum (λ= 486 nm) one must infer from its linewidth data this species shows photon entanglement, or alternatively substantial density fluctuations becomes obvious.

Paper Details

Date Published: 1 October 2013
PDF: 27 pages
Proc. SPIE 8832, The Nature of Light: What are Photons? V, 88320C (1 October 2013); doi: 10.1117/12.2019776
Show Author Affiliations
E. H. Berloffa, Retired (Austria)


Published in SPIE Proceedings Vol. 8832:
The Nature of Light: What are Photons? V
Chandrasekhar Roychoudhuri; Al F. Kracklauer; Hans De Raedt, Editor(s)

© SPIE. Terms of Use
Back to Top