Share Email Print
cover

Proceedings Paper

Mining patterns in persistent surveillance systems with smart query and visual analytics
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In Persistent Surveillance Systems (PSS) the ability to detect and characterize events geospatially help take pre-emptive steps to counter adversary’s actions. Interactive Visual Analytic (VA) model offers this platform for pattern investigation and reasoning to comprehend and/or predict such occurrences. The need for identifying and offsetting these threats requires collecting information from diverse sources, which brings with it increasingly abstract data. These abstract semantic data have a degree of inherent uncertainty and imprecision, and require a method for their filtration before being processed further. In this paper, we have introduced an approach based on Vector Space Modeling (VSM) technique for classification of spatiotemporal sequential patterns of group activities. The feature vectors consist of an array of attributes extracted from generated sensors semantic annotated messages. To facilitate proper similarity matching and detection of time-varying spatiotemporal patterns, a Temporal-Dynamic Time Warping (DTW) method with Gaussian Mixture Model (GMM) for Expectation Maximization (EM) is introduced. DTW is intended for detection of event patterns from neighborhood-proximity semantic frames derived from established ontology. GMM with EM, on the other hand, is employed as a Bayesian probabilistic model to estimated probability of events associated with a detected spatiotemporal pattern. In this paper, we present a new visual analytic tool for testing and evaluation group activities detected under this control scheme. Experimental results demonstrate the effectiveness of proposed approach for discovery and matching of subsequences within sequentially generated patterns space of our experiments.

Paper Details

Date Published: 23 May 2013
PDF: 14 pages
Proc. SPIE 8747, Geospatial InfoFusion III, 87470P (23 May 2013); doi: 10.1117/12.2019518
Show Author Affiliations
Mohammad S. Habibi, Tennessee State Univ. (United States)
Amir Shirkhodaie, Tennessee State Univ. (United States)


Published in SPIE Proceedings Vol. 8747:
Geospatial InfoFusion III
Matthew F. Pellechia; Richard J. Sorensen; Kannappan Palaniappan, Editor(s)

© SPIE. Terms of Use
Back to Top