Share Email Print

Proceedings Paper

Non-thermal phase transitions in semiconductors under femtosecond XUV irradiation
Author(s): Nikita A. Medvedev; Harald O. Jeschke; Beata Ziaja
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

When a semiconductor or a dielectric is irradiated with ultrashort intense X-ray pulse, several processes occur: first the photoabsorption brings the electron subsystem out of equilibrium, bringing valence or deeper shells electrons into high energy states of the conduction band. Then, secondary electron cascading promotes further electrons of the valence to conduction band increasing their number there. These electrons also influence the atomic motion, modifying the interatomic forces. This process is known as a nonthermal melting. It can turn a material into a new phase state on ultrashort timescales. Recently developed hybrid model for treating all of these processes with different computational tools was reported in [N. Medvedev et al, New J. Phys. 15, 015016 (2013)]. Based on this model, we present here further investigations of nonthermal processes occurring in diamond under irradiation with a FLASH pulse of 10 fs FWHM and 92 eV photon energy. It is shown that the diamond turns into graphite under such irradiation, independently whether constant pressure or constant volume modeling is performed. However, for the latter case, the time of the nonthermal phase transition is longer (few tens of fs for P=const vs few hundreds of fs for V=const) and the damage threshold is slightly higher (0.69 eV/atom vs 0.74 eV/atom, correspondingly).

Paper Details

Date Published: 3 May 2013
PDF: 10 pages
Proc. SPIE 8777, Damage to VUV, EUV, and X-ray Optics IV; and EUV and X-ray Optics: Synergy between Laboratory and Space III, 877709 (3 May 2013); doi: 10.1117/12.2019123
Show Author Affiliations
Nikita A. Medvedev, Deutsches Elektronen-Synchrotron (Germany)
Harald O. Jeschke, Johann Wolfgang Goethe-Univ. Frankfurt am Main (Germany)
Beata Ziaja, Deutsches Elektronen-Synchrotron (Germany)
Institute of Nuclear Physics, Polish Academy of Sciences (Poland)

Published in SPIE Proceedings Vol. 8777:
Damage to VUV, EUV, and X-ray Optics IV; and EUV and X-ray Optics: Synergy between Laboratory and Space III
Libor Juha; René Hudec; Ladislav Pina; Saša Bajt; Richard London, Editor(s)

© SPIE. Terms of Use
Back to Top