Share Email Print
cover

Proceedings Paper

New generation transistor technologies enabled by 2D crystals
Author(s): D. Jena
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The discovery of graphene opened the door to 2D crystal materials. The lack of a bandgap in 2D graphene makes it unsuitable for electronic switching transistors in the conventional field-effect sense, though possible techniques exploiting the unique bandstructure and nanostructures are being explored. The transition metal dichalcogenides have 2D crystal semiconductors, which are well-suited for electronic switching. We experimentally demonstrate field effect transistors with current saturation and carrier inversion made from layered 2D crystal semiconductors such as MoS2, WS2, and the related family. We also evaluate the feasibility of such semiconducting 2D crystals for tunneling field effect transistors for low-power digital logic. The article summarizes the current state of new generation transistor technologies either proposed, or demonstrated, with a commentary on the challenges and prospects moving forward.

Paper Details

Date Published: 29 May 2013
PDF: 10 pages
Proc. SPIE 8725, Micro- and Nanotechnology Sensors, Systems, and Applications V, 872507 (29 May 2013); doi: 10.1117/12.2018450
Show Author Affiliations
D. Jena, Univ. of Notre Dame (United States)


Published in SPIE Proceedings Vol. 8725:
Micro- and Nanotechnology Sensors, Systems, and Applications V
Thomas George; M. Saif Islam; Achyut K. Dutta, Editor(s)

© SPIE. Terms of Use
Back to Top